Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\)
nên AB<AC<BC
b: Xét ΔEBA có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
=>BA=BE(1)
Xét ΔCAB vuông tại A có
\(\cos B=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{BC}=\dfrac{1}{2}\)
=>BA=1/2BC(2)
Từ (1) và (2) suy ra BE=1/2BC
=>E là trung điểm của BC
Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến
nên AE=CE
c: Xét ΔCAB có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
d: Xét ΔCEA có
AI là đường trung tuyến
EF là đường trung tuyến
AI cắt EF tại G
Do đó: G là trọng tâm của ΔCAE
=>H là trung điểm của AE
Ta có: ΔEBA cân tại B
mà BH là đường trung tuyến
nên BH là đường cao
gọi abc là tam giác, ah là đường cao xuất phát từ đỉnh a
theo đề ta có: \(BC.\frac{3}{4}=AH\)
\(\Rightarrow AH=18dm\)
Sabc= 18.24:2=216(\(^{dm2}\)