K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐỀ BÀI KO THUYẾT PHỤC

29 tháng 9 2020

Áp dụng định lí Pitago trong tam giác ABC 

=> \(BC=5\sqrt{2}>7\)

Xét tam giác MBC có: MB + MC > BC >7 

Xét tam giác NBC có: NB + NC > BC > 7 

=> ( MB + NB ) + ( MC + NC ) > 14 

+) Nếu MB + NB < 7 => MC + NC > 7 

+) Nếu MC + NC < 7 => MB + NB > 7

=> Tồn tại một trong hai tổng MB + NB ; MC + NC sẽ lớn hơn 7 

Vậy ...

17 tháng 4 2018

Giả sử tam giác đã cho là ABC . Gọi M,N,P là trung điểm của các cạnh  BC,CA,AB và G là trọng tâm của tam giác . Lấy \(A_0,B_0,C_0,X,Y,Z,T,S,R\)lần lượt là các trung điểm của các đoạn thẳng GA,GB,GC,BM,CM,CN,AN,AP,BP . Tam giác ABC chia thành 12 phần = nhau

Theo nguyên lý Dirichlet , trong số 13 điểm đã cho tồn tại hai điểm cùng thuộc 1 phần . Do cạnh của tam giác ABC = 6cm  nên \(GA_0=AA_0\)\(GB_0=BB_0=CC_0=GC_0=\sqrt{3cm}\)

20 tháng 3 2018

cốt ơi sao ko on