\(\left(P\right)\),một điểm A\(\in\)mp
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Ta có mp P và Q cùng đi qua A, hai mp có giao điểm thì cắt nhau.

Với d và d' thuộc Q cùng với việc d song song mp P(mp chứa d') suy ra d song song d'.

Nếu d song song mp P mà d và d' ko cùng thuộc một mp thì đây là hai đừờng thẳng chéo nhau

6 tháng 4 2018

yes it is

Đặt \(A=\frac{\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)

\(\Rightarrow16A=\frac{\left(a+b+c+d+e\right)^2\left(a+b+c+d\right)\left(a+b+c\right)\left(a+b\right)}{abcde}\)

Áp dụng AM-GM ta có:

\(\Rightarrow16A\ge\frac{4e\left(a+b+c+d\right)^2\left(a+b+c\right)\left(a+b\right)}{abcde}\)

\(\Rightarrow16A\ge\frac{4e.4d\left(a+b+c\right)^2\left(a+b\right)}{abcde}\)

\(\Rightarrow16A\ge\frac{4e.4d.4c\left(a+b\right)^2}{abcde}\)

\(\Rightarrow16A\ge\frac{4e.4d.4c.4ab}{abcde}\)

\(\Rightarrow A\ge16\)

Dấu "=" xảy ra khi đồng thời: 

\(\text{a+b+c+d+e=4, a+b+c+d=e, a+b+c=d, a+b=c, a=b}\)

\(\Rightarrow e=2,d=1,c=\frac{1}{2},a=\frac{1}{4},b=\frac{1}{4}\)

13 tháng 2 2018

Hỏi đáp Toán

13 tháng 2 2018

Hỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

9 tháng 4 2021

A B C x y D 1 2 3 1 F 1

9 tháng 4 2021

Trên tia đối của tia AC kẻ tia Ax.

Do đó AD là phân giác ngoài của \(\widehat{BAx}\).

Trên tia đối của tia AD lấy tia Ay. Lấy điểm F thuộc ia Ay sao cho \(\widehat{DCF}=\widehat{DAB}\)hay \(\widehat{DCF}=\widehat{A_2}\)

Xét \(\Delta BAD\)và \(\Delta FCD\)có:

\(\widehat{A_2}=\widehat{DCF}\)(hình vẽ trên).

\(\widehat{CDF}\)chung.

\(\Rightarrow\Delta BAD~\Delta FCD\left(g.g\right)\)

\(\Rightarrow\widehat{B_1}=\widehat{F_1}\)(2 góc tương ứng).

Và \(\frac{BD}{FD}=\frac{AD}{CD}\)(tỉ số đồng dạng).

\(\Rightarrow BD.CD=FD.AD\left(1\right)\)

Ta lại có: \(\widehat{A_1}=\widehat{A_2}\)(vì AD là phân giác của \(\widehat{BAx}\)).

Mà \(\widehat{A_1}=\widehat{A_3}\)(vì đối đỉnh).

\(\Rightarrow\widehat{A_2}=\widehat{A_3}\left(=\widehat{A_1}\right)\)

Xét \(\Delta BAD\)và \(\Delta FAC\)có:

\(\widehat{B_1}=\widehat{F_1}\)(chứng minh trên).

\(\widehat{A_2}=\widehat{A_3}\)(chứng minh trên).

\(\Rightarrow\Delta BAD~\Delta FAC\left(g.g\right)\)

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AF}\)(tỉ số đồng dạng).

\(\Rightarrow AD.AF=AB.AC\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\).

\(\Rightarrow FD.AD-AD.AF=BD.CD-AB.AC\)

\(\Rightarrow BD.CD-AB.AC=AD\left(FD-AF\right)\)

\(\Rightarrow BD.CD-AB.AC=AD.AD\)

\(\Rightarrow BD.CD-AB.AC=AD^2\)(điều phải chứng minh).