\(\perp\) n và n//p thì :

A  M

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a) Xét ΔBAE vuông tại A và ΔBDE vuông tại D có: BA = BD (gt); BE cạnh chung

Vậy: ΔBAE=ΔBDE (ch, cgv)

b), c) Gọi I là giao điểm của BE và AD.

Xét ΔABI và ΔDBI có: BA = BD (gt)

\(\widehat{ABI}\) = \(\widehat{DBI}\) (2 góc tương ứng)

BI cạnh chung

Vậy ΔABI và ΔDBI (c.g.c)

\(\Rightarrow\) \(\widehat{BAD}\) = \(\widehat{BDA}\) (2 góc tương ứng)

Ta có: \(\widehat{BAC} = 90\)\(^o\)\(\widehat{AHD} = 90\)\(^o\),

\(\widehat{BAD}\)= \(\widehat{BDA}\) \(\Rightarrow\)\(\widehat{HAD} = \widehat{DAK}\)

Vậy AD là tia phân giác \(\widehat{HAC}\)

Xét ΔHAD vuông tại H và ΔKAD vuông tại K có:

\(\widehat{HAD} = \widehat{KAD}\) (cmt)

AD cạnh chung

Vậy: ΔHAD = ΔKAD (ch, gn)

\(\Rightarrow\) AH = AK (2 cạnh tương ứng)

d) F đâu ra

Violympic toán 7

a) Vì tam giác ABC cân tại A

=> AB = AC và Góc ABC = Góc ACB

Xét tam giác AHC và tam giác AHB, ta có:

Góc AHB = AHC ( = 90 độ )

AB = AC (cmt)

Góc ABC = Góc ACB ( cmt)

=> Tam giác AHC = Tam giác AHB ( ch-gn )

b) Vì tam giác AHC = Tam giác AHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét tam giác BHN và tam giác CHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> Tam giác BHN = Tam giác CHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c) Xét tam giác MHC và tam giác QHB, ta có:

Góc HMC = Góc HQB ( = 90 độ )

Góc MCH = Góc QBH ( do tam giác ABC cân tại A )

HC = HB ( câu b )

=> Tam giác MHC = Tam giác QHB ( ch-gn )

=> Góc MHC = Góc QHB

Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )

=> Góc QHB = Góc BHN

Xét tam giác AQH và tam giác AMH, ta có:

Góc AQH = Góc AMH ( = 90 độ )

AH là cạnh huyền chung

Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )

=> Tam giác AQH = Tam giác AMH ( ch-gn )

=> QH = HM ( Hai cạnh tương ứng )

Mà HM = HN ( gt )

=> QH = HN

Gọi K là trung điểm của QN

Xét tam giác KHQ và tam giác KHN, ta có:

HQ = HN ( cmt )

Góc QHB = Góc BHN ( cmt )

HK là cạnh chung

=> Tam giác KHQ = Tam giác KHN ( c-g-c )

=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )

Mà góc QKH và góc NKH là hai góc kề bù

=> Góc QKH = Góc NKH = 180/2 = 90 độ

=> HK là đường trung trực của QN

Hay BC là đường trung trực của QN

29 tháng 1 2017

A B C D E I H K M

a)

Xét tam giác ABD và tam giác ACE có:

AB = AC (tam giác ABC cân tại A)

ABD = ACE (tam giác ABC cân tại A)

BD = CE (gt)

=> Tam giác ABD = Tam giác ACE (c.g.c)

b)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE cân tại A

c)

Xét tam giác HBD vuông tại H và tam giác KCE vuông tại K có:

HBD = KCE (tam giác ABC cân tại A)

BD = CE (gt)

=> Tam giác HBD = Tam giác KCE (cạnh huyền - góc nhọn)

d)

HDB = IDE (2 góc đối đỉnh)

KEC = IED (2 góc đối đỉnh)

mà HDB = KEC (Tam giác HBD = Tam giác KCE)

=> IDE = IED

=> Tam giác IDE cân tại I

MB = MC (M là trung điểm của BC)

BD = CE (gt)

=> MB - BD = MC - CE

=> MD = ME

=> M là trung điểm của DE

=> AM là đường trung tuyến của tam giác ADE cân tại A

=> AM là đường trung trực của DE

ID = IE (tam giác IDE cân tại I) => I thuộc đường trung trực của DE

AD = AE (tam giác ADE cân tại A) => A thuộc đường trung trực của DE

=> AI là đường trung trực của DE

mà AM là đường trung trực của DE (chứng minh trên)

=> A, M, I thẳng hàng

30 tháng 1 2017

câu a bn hơi nhầm thì phải phải là abd chứ có phải abc đâu

1. Cho \(\Delta ABC\) đều có cạnh là a. Tính diện tích \(\Delta ABC\) theo a. 2. Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, tia đối của CB lấy điểm E sao cho BD = CE. M là trung điểm của BC. a) C/m AM là phân giác \(\widehat{DAE}\) b) Vẽ \(BK\perp AD\left(K\in AD\right)\), \(CF\perp AE\left(F\in AE\right)\) . C/m 3 đường thẳng AM, BK, CF cùng đi qua một điểm. 3. Cho \(\widehat{xOy}\) = 1200. A là điểm...
Đọc tiếp

1. Cho \(\Delta ABC\) đều có cạnh là a. Tính diện tích \(\Delta ABC\) theo a.

2. Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, tia đối của CB lấy điểm E sao cho BD = CE. M là trung điểm của BC.

a) C/m AM là phân giác \(\widehat{DAE}\)

b) Vẽ \(BK\perp AD\left(K\in AD\right)\), \(CF\perp AE\left(F\in AE\right)\) . C/m 3 đường thẳng AM, BK, CF cùng đi qua một điểm.

3. Cho \(\widehat{xOy}\) = 1200. A là điểm thuộc tia phân giác của \(\widehat{xOy}\) . Vẽ \(AB\perp Ox\), \(AC\perp Oy\) .

a) \(\Delta ABC\) là tam giác gì?

b) C/m \(OA\perp BC\)

4. Cho \(\Delta ABC\) , tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Qua D kẻ Dx // AB, Dx cắt BC tại M. Gọi My là tia phân giác \(\widehat{DMC}\) , Bz là tia phân giác ngoài của \(\widehat{B}\) . C/m \(Bz\perp My\) .

5. Cho \(\Delta ABC\) cân tại A, AB = 5cm, BC = 8cm. Kẻ \(AH\perp BC\left(H\in BC\right)\) .

a) C/m HB = HC

b) Tính AH

c) Kẻ \(HD\perp AB,HE\perp AC\) . C/m \(\Delta HDE\) cân.

6. Cho \(\widehat{xOy}\) nhọn. I là một điểm điểm thuộc tia phân giác của \(\widehat{xOy}\) . Kẻ \(IA\perp Ox,IB\perp Oy\)

a) C/m IA = IB. Biết OI = 10cm, AI = 6cm. Tính OA.

b) Gọi K là giao điểm của BI \(\cap\) Ox, M là giao điểm của AI \(\cap\) Oy. So sánh AK và BM.

c) Gọi C là giao điểm của OI và MK. C/m OC \(\perp\) MK

1
12 tháng 3 2017

5.

a) Xét \(\Delta ABH\)\(\Delta ACH\) có :

AB = AC ( do \(\Delta ABC\) cân tại A )

AH : cạnh chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

do đó \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)

\(\Rightarrow\) HB = HC ( 2 cạnh tương ứng )

b) Có HB = HC ( chứng minh trên )

\(\Rightarrow\) HB + HC = BC

HB + HC = 8cm

2HB = 8cm

\(\Rightarrow\) HB = 4cm

Áp dụng định lý Pytago cho \(\Delta AHB\)\(\widehat{AHB}=90^o\)

\(AB^2=BH^2+AH^2\)

\(5^2=4^2+AH^2\)

25 = 16 + \(AH^2\)

\(AH^2\) = 25 - 16

\(AH^2\) = 9

\(\rightarrow AH=3cm\)

c) Xét \(\Delta BDH\)\(\Delta ECH\) có :

\(\widehat{B}=\widehat{C}\) ( do \(\Delta ABC\) cân tại A )

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

BH = HC ( chứng minh câu a )

do đó \(\Delta BDH=\Delta ECH\) ( cạnh huyền góc nhọn )

\(\Rightarrow\) HD = HE ( 2 cạnh tương ứng )

nên \(\Delta HDE\) cân tại H ( dấu hiệu nhận biết \(\Delta\) cân )

P/s : lúc nào rảnh làm tiếp nhé bây h muộn r , lm đại 1 bài dễ nhất trc ( xử lí lũ kia sau ) .

1 tháng 3 2021

câu c) C/M: MN//EF

1 tháng 3 2021

 cho tam giác DEF nha

a: Xét ΔABM và ΔACN có 

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

c: Ta có: \(\widehat{OBC}=\widehat{HBM}\)

\(\widehat{OCB}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{KCN}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

28 tháng 6 2017

Đêm qua em hỏi, chị lại ko nghĩ là em :V

Bài 1:

A D C B M N 1 1 1 2

*Hình ảnh chỉ mang tính chất minh họa

a) Ta có: \(xy\)\(//BD\)

\(BD\)là phân giác \(\widehat{ABC}\) \(\Rightarrow BD\)cắt \(BC\)

\(\Rightarrow xy\)cắt \(BC\) ( gọi giao điểm là M )

b) Ta có: \(\widehat{A_1}=\widehat{B_1}\left(slt\right)\)\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{B_2}\left(1\right)\)

Mặt khác \(\widehat{M_1}=\widehat{B_2}\left(đvi\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\widehat{A_1}=\widehat{M_1}\)

c) Xét \(\Delta BAM\)\(\widehat{A_1}=\widehat{M_1}\)(câu b)

\(\Rightarrow\Delta BAM\)cân tại \(B\)

\(\Delta BAM\)cân tại \(B\)\(BN\) là đường phân giác

=> \(BN\)đồng thời là đường cao của \(\Delta BAM\)

=> Đpcm

Bài 2:

x y B 150 K H I

*Hình ảnh chỉ mang tính chất minh họa (Nhinf cais anhr thaays gowms quas)

a) Ta cos: \(AH\) vuông góc \(By\)\(;\) \(CK\)vuông góc \(Bx\)

Mà Bx tạo với tia By một góc 150 độ => Bx cắt By tại B

=> AH cắt CK ( tại giao điểm I )

b) Ta có: \(\widehat{ABC}=150^o\Rightarrow\widehat{ABH}=30^o\)

\(\Rightarrow\widehat{BAH}=90-\widehat{ABH}=60^o\)

\(\Rightarrow\widehat{AIC}=\widehat{AIK}=90-\widehat{BAH}=30^o\)

@@ Cách khác

Ta có: \(\widehat{HBK}=\widehat{ABC}=150^o\left(đđ\right)\)

Xét tứ giác BHIK có:

\(\widehat{AIC}=360-\widehat{IHB}-\widehat{IKB}-\widehat{HBK}\) (Nếu chưa học cái này thì chứng minh bằng cách chia tứ giác thành 2 tam giác)

\(\Leftrightarrow\widehat{AIC}=360-90-90-150=30^o\)

27 tháng 6 2017

B1 :a)BC ko song song với BD vì chung B

->BC ko sog sog xy (xy//BD) nên cắt BC tại M

b)

c)NBA+ANB+BNA=180^o

NMB+MBN+BNM=180^o

AMB=MAB; B1=B2 (BN pg ABM)

Nen N1=N2;N1+N2=180^o ->ĐPCM

mỏi quá r` mai nghĩ tiếp mà vẽ hộ tui cái hình bài 2 vs