K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

a) Bảng này có khác so với bảng tần số đã học.

Các giá trị khác nhau của biến lượng được "phân lớp" trong các lớp đều nhau (10 đơn vị) mà không tính riêng từng giá trị khác nhau.

b) Số trung bình cộng

Để tiện việc tính toán ta kẻ thêm vào sau cột chiều cao là cột số trung bình cộng của từng lớp; sau cột tần số là cột tích giữa trung bình cộng.

Số trung bình cộng:\(\overline{X}=\dfrac{105+805+4410+6165+1628+155}{100}=132,68\left(cm\right)\)

6 tháng 2 2020

a) Bảng này có khác so với bảng tần số đã học.

Các giá trị khác nhau của biến lượng được "phân lớp" trong các lớp đều nhau (10 đơn vị) mà không tính riêng từng giá trị khác nhau.

b) Số trung bình cộng

Để tiện việc tính toán ta kẻ thêm vào sau cột chiều cao là cột số trung bình cộng của từng lớp; sau cột tần số là cột tích giữa trung bình cộng.

Số trung bình cộng:¯¯¯¯¯X=105+805+4410+6165+1628+155100=132,68(cm)

19 tháng 4 2017

a) Bảng này có khác so với bảng tần số đã học.

Các giá trị khác nhau của biến lượng được "phân lớp" trong các lớp đều nhau (10 đơn vị) mà không tính riêng từng giá trị khác nhau.

b) Số trung bình cộng

Để tiện việc tính toán ta kẻ thêm vào sau cột chiều cao là cột số trung bình cộng của từng lớp; sau cột tần số là cột tích giữa trung bình cộng.

Số trung bình cộng:

\(\overline{X}=\dfrac{105+805+4410+6165+1628+155}{100}=132,68\left(cm\right)\)


7 tháng 1 2018

sai rồi bạn ơi

9 tháng 9 2017

Giải:

a) \(-1313x^2y.2xy^3\)

\(=\left(-1313.2\right)\left(x^2.x\right)\left(y.y^3\right)\)

\(=-2626x^3y^4\)

Bậc của đơn thức là: \(3+4=7\)

b) \(1414x^3y.\left(-2x^3y^5\right)\)

\(=\left[1414.\left(-2\right)\right]\left(x^3.x^3\right)\left(y.y^5\right)\)

\(=-2828x^6y^6\)

Bậc của đơn thức là: \(6+6=12\).

Chúc bạn học tốt!!!

9 tháng 9 2017

a) -x2y. 2xy3 = -2x3y4. Đơn thức có bậc là 7

b) x3y. (-2x3y5) = -2x6y6. Đơn thức có bậc là 12

25 tháng 7 2017

Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!

Bạn xem lại đề!:)

25 tháng 7 2017

Đúng đó

19 tháng 4 2017

Hướng dẫn:

a) ∆KIL có ˆII^ = 620

nên ˆIKL+ˆILKIKL^+ILK^ = 1180

Vì KO và LO là phân giác ˆIKLIKL^, ˆILKILK^

nên ˆOKL+ˆOLKOKL^+OLK^= 1212(ˆIKL+ˆILKIKL^+ILK^)

=> ˆOKL+ˆOLKOKL^+OLK^ = 1212 1180

ˆOKL+ˆOLKOKL^+OLK^ = 590

∆KOL có ˆOKL+ˆOLKOKL^+OLK^ = 590

nên ˆKOLKOL^ = 1800 – 590 = 1210

c) Vì O là giao điểm của hai đường phân giác của ˆKK^ˆLL^ nên O cách đều ba cạnh của tam giác IKL

11 tháng 5 2019

a, Áp dụng định lí tổng 3 góc trong ΔIKL, ta có:

∠I + ∠IKL + ∠ILK= 180 độ

⇒ ∠IKL + ∠ILK= 180 độ - ∠I

OK, OL là phân giác của các góc K, L nên:

∠OKL= 1/2∠IKL, ∠OLK= 1/2∠ILK

⇒ ∠OKL + ∠OLK= 1/2 (∠IKL + ∠ILK)

= 1/2 . (180 độ - ∠I)

Áp dụng định lí tổng 3 góc trong ΔOKL có:

∠ KOL + ∠OKL + ∠OLK = 180 độ

⇒ ∠KOL= 180 độ - (∠OKL + ∠OLK)

= 180 độ - 180- ∠I / 2= 180 + ∠I/2

Mà ∠I= 62 độ nên:

∠KOL= 180 +62/2= 121 độ

b, Ta có: 3 đường phân giác trong tam giác đồng quy.

Mà 2 đường phân giác KO, LO cắt nhau tại O

⇒ OI là tia phân giác của ∠KIL

⇒ ∠KIO= 1/2 ∠KIL= 1/2. 62 độ= 31 độ

c, O là giao điểm 3 đường phân giác của ΔIKL. Áp dụng định lí 3 đường phân giác

Vậy O cách đều 3 cạnh của ΔIKL

26 tháng 6 2017

\(VT=\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}\)

\(=\left(a+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+d}\right)+\left(b+d\right)\left(\dfrac{1}{b+c}+\dfrac{1}{d+a}\right)\)

Ap dụng \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y} \left(\forall x,y>0\right)\)

Ta có: \(VT\ge\left(a+c\right).\dfrac{4}{a+b+c+d}+\left(b+d\right).\dfrac{4}{a+b+c+d}\)

\(=\dfrac{4\left(a+b+c+d\right)}{\left(a+b+c+d\right)}=4\left(ĐPCM\right)\)