Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)
Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn
Ta có: \(m^2-2n^2=mn\)
\(\Leftrightarrow m^2-2n^2-mn=0\)
\(\Leftrightarrow m^2-n^2-n^2-mn=0\)
\(\Leftrightarrow\left(m^2-n^2\right)-\left(n^2-mn\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)-n\left(n-m\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)+n\left(m-n\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+n+n\right)=0\)
\(\Leftrightarrow\left(m-n\right)\left(m+2n\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-n=0\\m+2n=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=n\\m=-2n\end{cases}}\)
TH1: Nếu \(m=n\)\(\Rightarrow m-n=0\)\(\Rightarrow A=\frac{m-n}{m+n}=0\)
TH2: Nếu \(m=-2n\)\(\Rightarrow A=\frac{-2n-n}{-2n+n}=\frac{-3n}{-n}=3\)
Vậy nếu \(m=n\)thì \(A=0\)
nếu \(m=-2n\)thì \(A=3\)
với m dương ta có \(\left(m-1\right)^2\ge0\forall m\\\Leftrightarrow m^2-2m+1\ge0\\ \Leftrightarrow m^2+1\ge2m\\ \Leftrightarrow m^2_{ }+2m+1\ge2m+2m\\\Leftrightarrow\left(m+1\right)^2\ge4m->đpcm \)
Dòng với m dương ở trên cùng, lỗi định dạng