Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
\(A=mn\left(m^2-n^2\right)\) (1)
\(A=mn\left(n-m\right)\left(n+m\right)\)(1)
1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}
2.-Với A dạng (2)
2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2
2.1- nếu n và m lẻ thì (n+m) chia hết cho 2
Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm
1/
n=2 ta thấy đúng
GS đúng với n=k tức là (1-x)k+(1+x)k<2k
Ta cm đúng với n=k+1
(1-x)k+1+(1+x)k+1< (1-x)k+(1+x)k+(1-x)(1+x)k+(1-x)k(1+x)= 2\(\left(\left(1-x\right)^k+\left(1+x\right)^k\right)\)\(< 2.2^k=2^{k+1}\)
=> giả sử là đúng
theo nguyên lí quy nạp ta có đpcm