Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)
NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
VẬY B<A
đặt \(A=\frac{10^{18}+1}{10^{19}+1};B=\frac{10^{19}+1}{10^{20}+1}\)
ta có: \(10A=\frac{10^{19}+1+9}{10^{19}+1}=1+\frac{9}{10^{19}+1}\)
\(10B=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
mà \(\frac{9}{10^{19}+1}>\frac{9}{10^{20}+1}\)
=> 10A >10B
=> A > B
Nhân chéo là được bạn ạ
TA so sánh: (15^5+2017).(19^5-2) với (19^5+2016).(19^5-1)
Dễ dàng thấy (15^5+2017).(19^5-2) < (19^5+2016).(19^5-1) (Mỗi thừa số của tích này đều lớn hơn mỗi thừa số của tích kia)
Suy ra A<B.
\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)
\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)
\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)
\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)
\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)
các câu còn lại tương tự thôi
B1 c2
dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)
chỗ phía dưới là 1 nha nó bị che
\(\frac{5}{21}\)+ \(0,5\) - \(\frac{19}{23}+\frac{16}{21}-\frac{4}{23}\)= 0,5
Chúc học tốt!!!
\(\frac{x+5}{20}+\frac{x+4}{19}=2\Leftrightarrow\frac{19\left(x+5\right)+20\left(x+4\right)}{380}=2\)
\(\Leftrightarrow\frac{19x+95+20x+80}{380}=2\Leftrightarrow\frac{39x+175}{380}=2\)
\(\Leftrightarrow39x+175=2.380\Leftrightarrow39x+175=760\)
\(\Leftrightarrow39x=585\Leftrightarrow x=15\)
Vậy x = 15
\(\frac{x+5}{20}+\frac{x+4}{19}=2\)
\(\Leftrightarrow\frac{19\left(x+5\right)+20\left(x+4\right)}{380}=2\)
\(\Leftrightarrow19x+95+20x+80=2.380\)
\(\Leftrightarrow39x+175=760\)
\(\Leftrightarrow39x=585\)
\(\Leftrightarrow x=15\)
Đặt \(A=\frac{19^{19}-5}{19^{20}+4}\)
\(\Rightarrow19A=\frac{19^{20}-95}{19^{20}+4}=\frac{19^{20}+4-99}{19^{20}+4}=1-\frac{99}{19^{20}+4}\)
\(B=\frac{19^{20}-5}{19^{21}+4}\)
\(\Rightarrow19B=1-\frac{99}{19^{21}+4}\) ( chỗ này bn lm giống như mk ở trên nha! )
\(\Rightarrow\frac{99}{19^{20}+4}>\frac{99}{19^{21}+4}\)
\(\Rightarrow1-\frac{99}{19^{20}+4}< 1-\frac{99}{19^{21}+4}\)
\(\Rightarrow19A< 19B\)
=> A < B