\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Day la bdt Svacso dau bang xay ra <=> \(\frac{a}{x}=\frac{b}{y}\)

11 tháng 2 2020

Quy đồng full

\(\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Leftrightarrow a^2xy+a^2y^2+b^2x^2+b^2xy\ge\left(a^2+2ab+b^2\right)xy\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)

 lun đúng

11 tháng 2 2020

Ta có: \(\text{Σ}_{cyc}\left(a-b\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\)

Dấu "=" khi a = b = c

11 tháng 2 2020

Đây là bất đằng thức gì vậy bạn ?

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

4 tháng 2 2016

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge 3\left(\frac{x}{y}+\frac{y}{x}\right)\) <=>\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4 - 3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)

Vì \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge 2\)

và \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge 2\)

nên BĐT tương đương 2+ 4- 3x2 \(\ge 0\)

<=> 0\(\ge 0\)

Dấu = xảy ra khi x=y

 

4 tháng 2 2016

Đặt \(\frac{x}{y}+\frac{y}{x}=a\) ta có \(lal=l\frac{x}{y}+\frac{y}{x}l=l\frac{x}{y}l+l\frac{y}{x}l\ge2\) ( cô - si )

=> \(a\ge2ora\le-2\)

 BĐT <=> \(a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)

(+) với \(a\ge2\) => \(a-1>a-2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)

(+) với \(a\le-2\Rightarrow a-2\le0;a-1\le0\Rightarrow\left(a-2\right)\left(a-1\right)\ge0\)

Vậy BĐT trên luôn đúng 

21 tháng 4 2019

a) Ta có: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(< =>2x^2+2y^2\ge x^2+2xy+y^2\)

\(< =>x^2+y^2\ge2xy\)

\(< =>x^2-2xy+y^2\ge0\)

\(< =>\left(x-y\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra <=> x=y

=>(đpcm).

21 tháng 4 2019

a. \(x^2+y^2-\frac{\left(x+y\right)^2}{2}\ge0\)

\(\Leftrightarrow2x^2+2y^2-\left(x+y\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2=\left(x+y\right)^2\ge0\) (Luôn đúng)

Hay \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\left(Dfcm\right)\)

b. \(ab-\frac{\left(a+b\right)^2}{4}\le0\)

\(\Leftrightarrow4ab-a^2-2ab-b^2\le0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)=-\left(a-b\right)^2\le0\) (Luôn đúng)

Hay \(ab\le\frac{\left(a+b\right)^2}{4}\)

Bài 1:

\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)

2 tháng 7 2020

Cảm ơn bạn nhé !