\(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\left(ĐK:x\ge0;x\ne1\right)\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}}=2\)

\(A=M:N\left(ĐK:x\ge0;x\ne2\right)\)

\(=2:\frac{x+2}{x-2}\)

\(=\frac{2\left(x-2\right)}{\left(x+2\right)}=\frac{2x-4}{x+2}=\frac{2\left(x+2\right)-6}{x+2}=2-\frac{6}{x+2}\)

Vì: \(x\ge0\)

=> \(x+2\ge2\)

=> \(\frac{6}{x+2}\le\frac{6}{2}=3\)

=> \(-\frac{6}{x+2}\ge-3\)

=> \(2-\frac{6}{x+2}\ge2-3=-1\)

Dấu "=" xảy ra khi x=0(tm)

Vậy..................

29 tháng 10 2020

a)  P= √x+1 √x−1 + x+2 x√x−1 - √x+1 x+√x+1 \(\Leftrightarrow0\)

b)\(\sqrt{x}\left(2x+2\right)+2x+abp^2-2\)

29 tháng 10 2020

Giải chi tiết giúp mình với ạ.

2 tháng 5 2021

a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)

\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)

b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)

2 tháng 5 2021

c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)

\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

NM
20 tháng 3 2021

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)

b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)

vậy \(P=\frac{4}{\sqrt{4}-1}=4\)

c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)

vậy \(\sqrt{P}\ge2\)