Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(B=\frac{\sqrt{x}-4}{x-2\sqrt{x}}+\frac{3}{\sqrt{x}-2}=\frac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\frac{B}{A}\Rightarrow P=\frac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{4}=1-\sqrt{x}\)
b, Ta có : \(M=P.\frac{1-\sqrt{x}}{\sqrt{x}-3}\Rightarrow M=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-3}\ge0\)
\(\Rightarrow\sqrt{x}-3\ge0\Leftrightarrow\sqrt{x}\ge3\Leftrightarrow x\ge9\)vì \(\left(\sqrt{x}-1\right)^2\ge0\)
M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)
=\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)
\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)
\(M=3\)
a) đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(M=\frac{x}{\sqrt{x}-1}\cdot\left(\frac{4}{\sqrt{x}+2}-\frac{\sqrt{x}-6}{x+2\sqrt{x}}\right)\)
\(M=\frac{x}{\sqrt{x}-1}\cdot\frac{4\sqrt{x}-\sqrt{x}+6}{\left(\sqrt{x}+2\right)\sqrt{x}}\)
\(M=\frac{x}{\sqrt{x}-1}\cdot\frac{3\sqrt{x}+6}{\left(\sqrt{x}+2\right)\sqrt{x}}\)
\(M=\frac{x}{\sqrt{x}-1}\cdot\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}\)
\(M=\frac{3\sqrt{x}}{\sqrt{x}-1}\)
b) Nếu \(\sqrt{x}-1< 0\Rightarrow M< 0\)
Nếu \(\sqrt{x}-1>0\Rightarrow M>0\) nên TH này thỏa mãn
Với \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Rightarrow x>1\)
\(M=\frac{3\sqrt{x}}{\sqrt{x}-1}=\frac{3\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=3+\frac{3}{\sqrt{x}-1}\)
Để M lớn nhất => \(\frac{3}{\sqrt{x}-1}\)max => \(\sqrt{x}-1\) min
...