Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n}{12}+\frac{n^2}{8}+\frac{n^3}{24}=\frac{2n+3n^2+n^3}{24}=\frac{n^3+2n^2+n^2+2n}{24}=\frac{n^2\left(n+2\right)+n\left(n+2\right)}{24}\)
\(=\frac{\left(n^2+n\right)\left(n+2\right)}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)
Do n chẵn nên n=2k (k nguyên) => n+2=2k+2=2(k+1) => n(n+2)=2k.2(k+1)=4k(k+1)
k(k+1) là 2 số nguyên liên tiếp, trong đó có ít nhất 1 số chẵn nên k(k+1) chia hết cho 2 => 4k(k+1) chia hết cho 8
=>n(n+2) chia hết cho 8=>n(n+1)(n+2) chia hết cho 8 (1)
Mặt khác n;n+1;n+2 là 3 số nguyên liên tiếp nên trong đó có ít nhất 1 số chia hết cho 3 (tự chứng minh hoặc xem cách chứng minh trên mạng nhé)
=>n(n+1)(n+2) chia hết cho 3 (2)
Từ (1) và (2) và (3;8)=1 => n(n+1)(n+2) chia hết cho 3.8=24
=>\(\frac{n\left(n+1\right)\left(n+2\right)}{24}\) nguyên => đpcm
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
a.(x+1)(x+2)(x+3)(x+4)-24=[(x+1)(x+4)][(x+2)(x+3)]-24=(\(x^2+5x+4\))(\(x^2+5x+6\))-24 (1)
đặt \(x^2+5x+5=a\)ta có (1)=(a-1)(a+1)-24=\(a^2-25=\left(a-5\right)\left(a+5\right)\)
thay a=\(x^2+5x+5\)vào (1) ta có (1)=(\(x^2+5x\)+5-5)(\(x^2+5x\)+5+5)=x(x+5)(\(x^2\)+5x+10)
b.ta có :\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}=\frac{a\left(a^2+3a+2\right)}{6}\)=\(\frac{a\left(a^2+2a+a+2\right)}{6}=\frac{a\left(a+1\right)\left(a+2\right)}{6}\).ta lại có a(a+1)(a+2) là tích 3 số nguyên liên tiếp luôn chia hết cho 6 suy ta điều cần cm
Ta có \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}\)
Lại có 2a + 3a2 + a3
=a(2+3a+a2)
= a(a2 + 3a +2)
=a(a2 +a +2a +2)
= a[a(a+1) + 2(a+1)]
=a [(a+1) (a+2)]
= a(a+1)(a+2)
ta thấy a(a+1)(a+2) là tích 3 số nguyên liên tiếp
=> a(a+1)(a+2) \(⋮3\) và \(⋮\)2
mà (2;3)=1
=> a(a+1)(a+2) \(⋮\)6
=> \(\frac{a\left(a+1\right)\left(a+2\right)}{6}\) là số nguyên hay \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) là số nguyên
\(\text{Ta có:}\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)
\(\Leftrightarrow\frac{2a+3a^2+a^3}{6}\)
\(\text{Xét tử số:}\)
\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)
\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]\)
\(=a\left(a+1\right)+\left(a+2\right)\)
\(\text{Vì a,a+1 là 2 số nguyên liên tiếp nên:}\)
\(a\left(a+1\right)⋮2\Rightarrow a\left(a+1\right)\left(a+2\right)⋮2\)
\(\Leftrightarrow a^3+3a^2+2a⋮2\left(1\right)\)
\(\text{Mặt khác }a,a+1,a+2\text{ là 3 số nguyên liên tiếp nên chúng}⋮3\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮3\)
\(\Leftrightarrow a^3+3a^2+2a⋮3\left(2\right)\)
\(\text{Từ (1) và (2) kết hợp (2;3) nguyên tố cùng nhau:}\)
\(\Rightarrow a^3+3a^2+2a⋮6\)
\(\Rightarrow\frac{a^3+3a^2+2a}{6}\inℤ\)
\(\Rightarrow\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\text{ là 1 số nguyên}\)
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
1/ \(a^3+b^3+ab=\left(a+b\right)\left(a^2+b^2-ab\right)+ab=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)
2/ \(F\left(x\right)=P\left(x\right).\left(x+2\right)+10\Rightarrow F\left(-2\right)=10\)
\(F\left(x\right)=Q\left(x\right).\left(x-2\right)+24\Rightarrow F\left(2\right)=24\)
Do \(x^2-4\) bậc 2 nên đa thức dư tối đa là bậc nhất có dạng \(ax+b\)
\(F\left(x\right)=R\left(x\right).\left(x^2-4\right)+ax+b\)
Thay \(x=-2\Rightarrow F\left(-2\right)=-2a+b=10\)
Thay \(x=2\Rightarrow F\left(2\right)=2a+b=24\)
\(\Rightarrow\left\{{}\begin{matrix}-2a+b=10\\2a+b=24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\) \(\Rightarrow\) dư \(\frac{7}{2}x+17\)
3/Vì đa thức chia có bậc 2 nên đa thức dư có bậc 1, có dạng ax+b. Ta có :\(x^{2015}+x^{1945}+x^{1930}+x^2-x+1=Q\left(x\right).\left(x^2-1\right)+ax+b\)Thay x=1 được 4=a+b(1)
Thay x=-1 được 2=-a+b(2)
Cộng (1) và (2) được 6=2b suy ra b=3, từ đó suy ra a=1
Vậy dư là x+3