\(P="\exists x\in R:x^4-x^2-2x+3\le0"\)

a) Lập mệnh đề phủ định...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

a)"\(\forall x\in R|x^4-x^2-2x+3>0\)''

b)\(x^4-x^2-2x+3\)

=\((x^4-2x^2+1)+(x^2-2x+1)+1\)

=\((x^2-1)^2+\left(x-1\right)^2+1>1\) (luôn đúng)

Vậy\(x^4-x^2-2x+3>0\) (đpcm)

15 tháng 4 2017

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.

d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"

Đây là mệnh đề sai vì với x= ta có :

3 =+1

18 tháng 4 2017

a) \(\exists x\in R:x.1\ne x\)

mệnh đề phủ định sai.

b) \(\exists x\in R:x.x\ne1\)

mệnh đề phủ định đúng.

c) \(\exists n\in Z:n\ge n^2\)

mệnh đề phủ định đúng.

10 tháng 1 2017

\(\overline{P}=\exists x\in R:x^2+4\le0\)

18 tháng 9 2018

\(x^4=3x^2+4x+3\Leftrightarrow x^4-2x^2+1=x^2+4x+4\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=x+2\\x^2-1=-x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{13}}{2}\)

Vì vậy mệnh đề "\(\exists x\in\mathbb{R},x^4=3x^2+4x+3\)" là mệnh đề đúng.

23 tháng 8 2018

+) ta có : \(x^4=3x^2+4x+3\Leftrightarrow x^4-3x^2-4x-3=0\)

\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x+x^2-x-3=0\)

\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)+\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x-3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{13}}{2}\\x=\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\exists x\in R,x^4=3x^2+4x+3\) \(\Rightarrow\) mệnh đề ở trên đúng

+) mệnh đề phủ định : \(\forall x\in R,x^4\ne3x^2+4x+3\)

26 tháng 12 2017

\(P="\forall x\in Q;3\ge x\ge\pi"\) mệnh đề phủ định này sai vì \(\dfrac{1}{2}\in Q\) nhưng \(\dfrac{1}{2}< 3\)

NV
12 tháng 10 2019

\(\overline{P}:"\forall x\in N:x^2-x-2\ne0"\)

Mệnh đề \(\overline{P}\) sai vì \(x=2\) thì \(x^2-x-2=0\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).

b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} >  2.2 - 1\) hay \(4 > 3\) (luôn đúng).

c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).

d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.