Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
\(x^4=3x^2+4x+3\Leftrightarrow x^4-2x^2+1=x^2+4x+4\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=x+2\\x^2-1=-x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{13}}{2}\)
Vì vậy mệnh đề "\(\exists x\in\mathbb{R},x^4=3x^2+4x+3\)" là mệnh đề đúng.
+) ta có : \(x^4=3x^2+4x+3\Leftrightarrow x^4-3x^2-4x-3=0\)
\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x+x^2-x-3=0\)
\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)+\left(x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x-3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{13}}{2}\\x=\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\exists x\in R,x^4=3x^2+4x+3\) \(\Rightarrow\) mệnh đề ở trên đúng
+) mệnh đề phủ định : \(\forall x\in R,x^4\ne3x^2+4x+3\)
\(P="\forall x\in Q;3\ge x\ge\pi"\) mệnh đề phủ định này sai vì \(\dfrac{1}{2}\in Q\) nhưng \(\dfrac{1}{2}< 3\)
\(\overline{P}:"\forall x\in N:x^2-x-2\ne0"\)
Mệnh đề \(\overline{P}\) sai vì \(x=2\) thì \(x^2-x-2=0\)
Cho mệnh đề Q:'\(\exists x\in R,x^2+2x+3< 0\). Phát biểu mệnh đề phủ định của Q và xét tính đúng sai
a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).
b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} > 2.2 - 1\) hay \(4 > 3\) (luôn đúng).
c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).
d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.
a)"\(\forall x\in R|x^4-x^2-2x+3>0\)''
b)\(x^4-x^2-2x+3\)
=\((x^4-2x^2+1)+(x^2-2x+1)+1\)
=\((x^2-1)^2+\left(x-1\right)^2+1>1\) (luôn đúng)
Vậy\(x^4-x^2-2x+3>0\) (đpcm)