Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.
b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"
c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(P\Rightarrow Q\right):\) "Nếu a có tận cùng bằng 0 thì a chia hết cho 5".
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)"Nếu a chia hết cho 5 thì a có tận cùng bằng 0"
b) \(\left(P\Rightarrow Q\right):\) đúng. \(\left(Q\Rightarrow P\right):\) sai
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x^2=1\) thì \(x=1\)". Mệnh để đảo là "Nếu \(x=1\) thì \(x^2=1\)"
b) Mệnh đề đảo "Nếu \(x=1\) thì \(x^2=1\) là đúng
c) Với \(x=-1\) thì mệnh đề \(\left(P\Rightarrow Q\right):\)sai
![](https://rs.olm.vn/images/avt/0.png?1311)
ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8
Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai
Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn
Vậy n+8 và n+1 là số chính phương
\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)
\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)
\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)
\(\Leftrightarrow9\left(2n+7\right)=9^2\)
\(\Leftrightarrow2n-7=9\)
\(\Leftrightarrow n=8\)
Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mệnh đề phủ định của mệnh đề là: \(\overline{P}:\forall n\in N,n^3-n\)là bội của 3
Ta có \(n^3-n=n\left(n-1\right)\left(n+1\right)⋮3\forall n\in N\)
\(\Rightarrow\overline{P}\)Đúng=> mđ đầu sai
![](https://rs.olm.vn/images/avt/0.png?1311)
Mệnh đề đảo của mệnh đề A ⇒ B là mệnh đề B ⇒A.
Ví dụ 1: A ⇒ B = “Nếu một số nguyên chia hết cho 3 thì nó có tổng các chữ số chia hết cho 3”. Mệnh đề này đúng.
Mệnh đề đảo: B ⇒A = “Nếu một số nguyên có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3”. Mệnh đề này cũng đúng.
Ví dụ 2: A ⇒ B = “Nếu một tứ giác là hình thoi thì nó có hai đường chéo vuông góc với nhau”. Mệnh đề này đúng.
Mệnh đề đảo: B ⇒A = “Nếu một tứ giác có hai đường chéo vuông góc với nhau thì tứ giác ấy là một hình thoi”. Mệnh đề này sai.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mệnh đề đúng.
Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)
Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)
\(\left(2n-1\right)^2-1\)
\(=4n^2-4n+1-1\)
\(=4n^2-4n\)
\(=4n\left(n-1\right)⋮4\forall n\)
Vậy mệnh đề trên đúng
Mệnh đề phủ định của mệnh đề trên
\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4