Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(β) vuông góc với d
⇒ (β) nhận vtcp của d là 1 vtpt.
(β) đi qua M(0; 0; -2)
⇒ (β): 4x + 3y + z + 2 = 0.
a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\) là
M ∈ d ⇒ M(12 + 4t; 9 +3t; 1 + t).
M ∈ α ⇒ 3.(12 + 4t) + 5.(9 + 3t) – (1 + t) – 2 = 0
⇔ 26t + 78 = 0.
⇔ t = -3.
⇒ M(0; 0; -2).
Xét phương trình:
2(1 + 2t) + (t) + (−2 – 3t) – 1 = 0 ⇔ 2t – 1= 0 ⇔ t = 1/2
Vậy đường thẳng d cắt mặt phẳng ( α ) tại điểm M(2; 1/2; −7/2).
Ta có vecto pháp tuyến của mặt phẳng ( α ) và vecto chỉ phương của đường thẳng d lần lượt là n α → = (2; 1; 1) và a d → = (2; 1; −3).
Gọi a ∆ → là vecto pháp tuyến của Δ, ta có a ∆ → ⊥ n α → và a ∆ → ⊥ a d →
Suy ra a ∆ → = n α → ∧ n d → = (−4; 8; 0) hay a ∆ → = (1; −2; 0)
Vậy phương trình tham số của ∆ là
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0
\(d:\frac{x}{1}=\frac{y+1}{2}=\frac{z-1}{-2}\) có VTCP \(\overrightarrow{u}\left(1;2;-2\right)\)
Mặt phẳng \(\left(Oxz\right)\)có VTPT \(\overrightarrow{j}\left(0;1;0\right)\)
Mặt phẳng (P) chứa d và vuông góc với (Oxz) nên VTPT của (P) là:
\(\overrightarrow{n}=\left[\overrightarrow{u},\overrightarrow{j}\right]=\left(2;0;1\right)\)
Mặt phẳng (P): điểm \(M\left(0;-1;1\right)\in d\subset\left(P\right)\), VTPT \(\overrightarrow{n}\left(2;0;1\right)\)
\(\Rightarrow\left(P\right):2x+z-1=0\)