Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít
1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy
2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15
3,
*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)
*) 2+3=8 hay 2.(2+3)-2=8
4+5=32 hay 4.(4+5)-4=32
5+8=60 hay 5.(5+8)-5=60
6+7=72 hay 6.(6+7)-6=72
7+8= 7.(7+8)-7=98
\(\left(1-\dfrac{1}{2}\right)\):\(\left(1-\dfrac{1}{3}\right)\):\(\left(1-\dfrac{1}{4}\right)\):\(\left(1-\dfrac{1}{5}\right)\):\(\left(1-\dfrac{1}{6}\right)\):\(\left(1-\dfrac{1}{7}\right)\)
=\(\left(\dfrac{2-1}{2}\right)\):\(\left(\dfrac{3-1}{3}\right)\):\(\left(\dfrac{4-1}{4}\right)\):\(\left(\dfrac{5-1}{5}\right)\):\(\left(\dfrac{6-1}{6}\right)\)
=\(\dfrac{1}{2}\):\(\dfrac{2}{3}\):\(\dfrac{3}{4}\):\(\dfrac{4}{5}\):\(\dfrac{5}{6}\)
=\(\dfrac{1.\left(3.4.5\right)6}{\left(3.4.5\right)\left(2.2\right)}\)
=\(\dfrac{6}{2.2}=\dfrac{3}{2}\)
a: Để A là số nguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
b: Để B là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{1;0\right\}\)(do x là số nguyên)
c: Để C là số nguyên thì \(3x-3+10⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
d: Để D là số nguyên thì \(4x-1⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{4;2;14;-8\right\}\)
Thề là bài của bạn Kirito làm mình không hiểu gì hết. Đáp án cuối cùng của bạn cũng sai nốt, tính tích phân thì ra giá trị cụ thể chứ làm gì còn $c$
Lời giải:
Ta có \(I=\underbrace{\int ^{1}_{0}x^2dx}_{A}+\underbrace{\int ^{1}_{0}x^3\sqrt{1-x^2}dx}_{B}\)
Xét \(A=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}\)
Xét \(B=\frac{1}{2}\int ^{1}_{0}x^2\sqrt{1-x^2}d(x^2)\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow x^2=1-t^2\). Khi đó
\(B=-\frac{1}{2}\int ^{1}_{0}(1-t^2)td(1-t^2)=\int ^{1}_{0}t^2(1-t^2)dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^3}{3}-\frac{t^5}{5} \right )=\frac{2}{15}\)
\(\Rightarrow I=A+B=\frac{7}{15}\)
Chắc bạn học lớp 12 nhỉ???
Đ/A:
\(I=\int\limits^1_0x^2\left(1+x\sqrt{1-x^2}\right)dx=\int\limits^1_0x^2dx+\int\limits^1_0x^3\sqrt{1-x^2}dx\)
\(I_1=\int\limits^1_0x^2dx=\frac{x^3}{3}\)|\(_0^1=\frac{1}{3}\)
\(I_2=\int\limits^1_0x^3\sqrt{1-x^2}dx\)
Đặt \(t=\sqrt{1-x^2}\Rightarrow x^2=1-t^2\Rightarrow xdx\Rightarrow tdt\)
Đổi cận: \(x=0\Rightarrow t=1;x=1\Rightarrow t=0\)
\(\Rightarrow I_2=-\int\limits^1_0\left(1-t^2\right)t^2dt=\int\limits^1_0\left(t^2-t^4\right)dt=\left(\frac{t^3}{3}-\frac{t^5}{5}\right)\)|\(_0^1=\frac{2}{15}\)
Vậy \(I=I_1+I_2=\frac{7}{5}\)
Đặt \(u=x\Rightarrow du=dx;dv=c^{2x}\) chọn \(v=\frac{1}{2}c^{2x}\)
\(\Rightarrow\int\limits^1_0xc^{2x}dx=\frac{x}{2}c^{2x}\)|\(_0^1-\frac{1}{2}\int\limits^1_0c^{2x}dx=\frac{c^2}{2}-\frac{1}{4}c^{2x}\)|\(_0^1=\frac{c^2+1}{4}\)
Vậy \(I=\frac{3c^2+7}{2}\)
Lời giải:
Gọi độ dài cạnh đáy là $x$
Hạ đường cao $SH$ của hình chóp. Do đây là hình chóp tứ giác đều nên $H$ là tâm của hình vuông $ABCD$
Từ $H$ kẻ \(HE\perp AB\)
\(\Rightarrow \angle ((SAB),(ABCD))=\angle (HE,SE)=\angle SEH=30^0\)
\(\Rightarrow \frac{HE}{SE}=\cos SEH=\cos 30=\frac{\sqrt{3}}{2}\)
Mà \(HE\parallel AD\Rightarrow \frac{HE}{AD}=\frac{HB}{BD}=\frac{1}{2}\Leftrightarrow HE=\frac{x}{2}\)
Do đó: \(SE=\frac{x}{\sqrt{3}}\)
Diện tích mặt bên: \(S_{SAB}=\frac{SE.AB}{2}=\frac{\sqrt{3}a^2}{6}\)
\(\Leftrightarrow \frac{x^2}{2\sqrt{3}}=\frac{\sqrt{3}a^2}{6}\Leftrightarrow x^2=a^2\Leftrightarrow x=a\)
\(\frac{SH}{HE}=\tan SEH=\tan 30=\frac{\sqrt{3}}{3}\Rightarrow SH=\frac{\sqrt{3}}{3}.\frac{a}{2}=\frac{\sqrt{3}}{6}a\)
Vậy: \(V=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{3}a}{6}.a^2=\frac{\sqrt{3}a^3}{18}\)
\(A=\left(\frac{1+i}{1-i}\right)^{11}=\left(i\right)^{11}=i\cdot\left(i^2\right)^5=-i\)
\(B=\left(\frac{2i}{1+i}\right)^8=\left(1+i\right)^8=\left[\left(1+i\right)^2\right]^4=\left(2i\right)^4=16\)
\(\Rightarrow\overline{z}=16-i\Leftrightarrow z=16+i\)
Vậy \(\left|\overline{z}+iz\right|=\left|15+15i\right|=15\sqrt{2}\)