Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chỉ cần sử dụng công thức 2 giá trị của C để có cùng 1 giá trị của $U_C$ :
$U_C=U_{C_{max}} \cos \left(\dfrac{\varphi _1-\varphi _2}{2} \right)$
$\Rightarrow U_{C_{max}}=\dfrac{60}{\cos \dfrac{\pi }{6}}=40\sqrt{3} V$
Khi $U_{C_{max}}$ ta có:
$P=\dfrac{U^2}{R}\cos ^2\varphi _3=P_{max}\cos ^2\varphi _3=\dfrac{P_{max}}{2}$
$\Rightarrow \cos \varphi _3=\dfrac{\sqrt{2}}{2}$
Vẽ giản đồ suy ra: $U=\dfrac{U_{C_{max}}}{\sqrt{2}}=20\sqrt{6}\left(V \right)$
i U U U U U L C R LR RC 3 1
Nhận xét: Do R2 = L/C nên URL vuông pha URC
Không mất tính tổng quát, ta giả sử URL là \(\sqrt{3}\) phần, URC là 1 phần
Từ giản đồ véc tơ, ta có: \(\frac{1}{U_R^2}=\frac{1}{U_{RL}^2}+\frac{1}{U_{RC}^2}=\frac{1}{3}+1=\frac{4}{3}\Rightarrow U_R=\frac{\sqrt{3}}{2}\)
Suy ra: \(U_C=\sqrt{1^2-\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{1}{2}\)
\(U_L=\sqrt{\left(\sqrt{3}\right)^2-\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{3}{2}\)
Vậy \(\cos\varphi=\frac{U_R}{U}=\frac{\frac{\sqrt{3}}{2}}{\sqrt{\left(\frac{\sqrt{3}}{2}\right)^2+\left(\frac{3}{2}-\frac{1}{2}\right)^2}}=\sqrt{\frac{3}{7}}\)
\(Z_C=40\Omega\)
Đoạn mạch AM có: \(\tan\varphi_{AM~i}=\frac{-Z_C}{R_1}=-1\)\(\Rightarrow\varphi_{AM~i}=-\frac{\pi}{4}\)\(\Rightarrow\varphi_{AM}-\varphi_i=-\frac{\pi}{4}\Rightarrow\varphi_i=\varphi_{AM}+\frac{\pi}{4}=-\frac{7\pi}{12}+\frac{\pi}{4}=-\frac{\pi}{3}\)
\(u_{AB}\) là tổng hợp của \(u_{AM}\) và \(u_{MB}\) nên: \(u_{AB}=221\cos\left(100\pi t-0,587\right)\)(Tổng hợp bằng máy tính) \(\Rightarrow\varphi_{AB}=-0,587\)
Như vậy, độ lệch pha của \(u_{AB}\) đối với \(i\)là: \(\varphi=\varphi_{AB}-\varphi_i=-0,587+\frac{\pi}{3}=0,46\)
Hệ số công suất \(\cos\varphi=\cos0,46=0,896\)
\(Z_{L1}=\omega_1.L=30\) (1)
\(Z_{C1}=\dfrac{1}{\omega_1C}=40\) (2)
Lấy (1) chia (2) vế với vế ta được: \(\omega_1^2LC=\dfrac{3}{4}\) (3)
Khi tần số \(\omega_2\) thì hệ số công suất bằng 1
\(\Rightarrow Z_{L2}=Z_{C2}\Rightarrow \omega_2.L=\dfrac{1}{\omega_2C}\)
\(\Rightarrow \omega_{2}^2LC=1\) (4)
Lấy (4) chia (3) vế với vế \(\Rightarrow \dfrac{\omega_2}{\omega_1}=\dfrac{2}{\sqrt 3}\Rightarrow \omega_2=\dfrac{2}{\sqrt 3}\omega_1\)
Chọn B.
Áp dụng: Hai dao động điều hòa x1 vuông pha với x2 thì \(\left(\frac{x_1}{x_{1max}}\right)^2+\left(\frac{x_2}{x_{2max}}\right)^2=1\)
Nên: Do uR vuông pha với uL \(\Rightarrow\left(\frac{u_R}{U_{0R}}\right)^2+\left(\frac{u_L}{U_{0L}}\right)^2=1\)
Ở thời điểm t2: \(\left(\frac{0}{U_{0R}}\right)^2+\left(\frac{20}{U_{0L}}\right)^2=1\Rightarrow U_{0L}=20V\) , tương tự: \(U_{0C}=60V\)
Ở thời điểm t1: \(\left(\frac{15}{U_{0R}}\right)^2+\left(\frac{-10\sqrt{3}}{20}\right)^2=1\Rightarrow U_{0R}=30V\)
Vậy: \(U_0=\sqrt{U_{0R}^2+\left(U_{0L}-U_{0C}\right)^2}=\sqrt{30^2+\left(20-60\right)^2}=50V\)
\(\Rightarrow U=\frac{U_0}{\sqrt{2}}=25\sqrt{2}V\)
Em có thể xem thêm lý thuyết và bài tập tự luyện phần điện xoay chiều tại đây: http://edu.olm.vn/on-tap/vat-ly/chuyen-de.52/%C4%90i%E1%BB%87n-xoay-chi%E1%BB%81u
Mạch LC có i vuông qua với q nên:
\((\dfrac{i}{I_0})^2+(\dfrac{q}{Q_0})^2=1\)\(\Rightarrow (\dfrac{i}{\omega Q_0})^2+(\dfrac{q}{Q_0})^2=1\)
\(\Rightarrow (\dfrac{i_1}{\omega Q_0})^2+(\dfrac{q_1}{Q_0})^2=1\)
\((\dfrac{i_2}{\omega Q_0})^2+(\dfrac{q_2}{Q_0})^2=1\)
\(\Rightarrow (\dfrac{i_1}{\omega })^2+(q_1)^2=(\dfrac{i_2}{\omega })^2+(q_2)^2\)
\(\Rightarrow \omega ^2=\dfrac{i_1^2-i_2^2}{q_2^2-q_1^2}\)
\(\Rightarrow T=\dfrac{2\pi}{\omega}=2\pi.\sqrt{\dfrac{q_2^2-q_1^2}{i_1^2-i_2^2}}\)
\(\Rightarrow \lambda = c.T =2\pi c.\sqrt{\dfrac{q_2^2-q_1^2}{i_1^2-i_2^2}}\)
Chọn B.