Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cường độ dòng hiệu dụng: \(I=\dfrac{U}{Z}\)
Ta có: \(I_1=I_2\)
\(\Rightarrow \dfrac{U}{Z_1}=\dfrac{U}{Z_2}\)
\(\Rightarrow Z_1=Z_2\)
\(\Rightarrow \sqrt{R^2+(Z_{L1}-Z_{C1})^2}=\Rightarrow \sqrt{R^2+(Z_{L2}-Z_{C2})^2}\)
\(\Rightarrow Z_{L1}-Z_{C1}=Z_{C2}-Z_{L2}\)
\(\Rightarrow Z_{L1}+Z_{L2}=Z_{C1}+Z_{C2}\)
\(\Rightarrow \omega_1.L+\omega_2.L=\dfrac{1}{\omega_1C}+\dfrac{1}{\omega_2C}\)
\(\Rightarrow (\omega_1+\omega_2)L=\dfrac{1}{C}.\dfrac{\omega_1+\omega_2}{\omega_1.\omega_2}\)
\(\Rightarrow \omega_1.\omega_2=\dfrac{1}{LC}\)
Chọn C
\(\varphi=\varphi_u-\varphi_i=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}\)
\(\tan\varphi=\frac{Z_L-Z_C}{R}=1\Rightarrow Z_L-Z_C=R\)
\(\Rightarrow Z=\sqrt{R^2+\left(Z_L-Z_C\right)^2}=R\sqrt{2}\)
Mà \(Z=\frac{U}{I}=\frac{200}{2}=100\Rightarrow R=\frac{100}{\sqrt{2}}=50\sqrt{2}\)
Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.
1. \(Z_L=200\sqrt{3}\Omega\), \(Z_C=100\sqrt{3}\Omega\)
Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)
Công suất tức thời: p = u.i
Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.
Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có:
u u i i 120° 120°
Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.
Tổng góc quét: 2.120 = 2400
Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)
2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)
\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)
\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)
Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)
\(\Rightarrow Z_L=220\Omega\)
\(U^2=U_R^2+U_c^2=\left(100\sqrt{3}\right)^2+100^2=40000\)
=> U = 200 (V)
\(\cos\varphi=\dfrac{U_R}{U}=\dfrac{100.\sqrt{3}}{200}=\dfrac{\sqrt{3}}{2}\)
=> D
Áp dụng CT:
Nếu \(R^2=n\dfrac{L}{C}\)
Thì: \(\cos\varphi = \dfrac{1}{\sqrt{1+\dfrac{1}{n}(\dfrac{\omega_1}{\omega_2}-\dfrac{\omega_2}{\omega_1})^2}}\)
Ta được: \(\cos\varphi = \dfrac{1}{\sqrt{1+\dfrac{1}{1}(\dfrac{50}{200}-\dfrac{200}{50})^2}}=...\)
n là một hệ số nào đấy, ví dụ trong bài này thì n = 1