Cho M=3x-4

              x-3

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

ko biet

4 tháng 4 2015

a) số nguyên tố nhỏ nhất là 2

 

3 tháng 9 2015

a) Vì 132 là số chẵn =>132 là tổng của 3 số nguyên tố =>1 trong 3 số phải la số chẵn => số chẵn đó bằng 2 mà là số ntố nhỏ nhất nên số nhỏ nhất đó là 2.

c)xét trường hợp p=2=> p+10=12 là hợp số loại

 Xét trường hợp p= 3=> p+10= 13;p+20=23 đều là hợp số.

Xét trường hợp p>3 => p có 1 trong 2 dạng 3k+1;3k-1

   với p= 3k +1=> p+20= 3k+21 chia hết cho 3

   với p=3k-1=> p+10= 3k+9 chia hết cho 3

vậy p=3 thì p+10;p+20 đều là số ntố.

5 tháng 11 2017

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

15 tháng 4 2020

ta có x+20=x-3+23

=> 23 chia hết cho x-3

=> x-3 \(\inƯ\left(23\right)=\left\{-23;-1;1;23\right\}\)

Ta có bảng

x-3-23-1123
x-202426
26 tháng 2 2018

b )  Để n + 3/2n - 2 nguyên

<=>   n + 3 chia hết 2n - 2 

<=>   2.( n + 3 ) chia hết 2n - 2

<=>    2n + 6 chia hết 2n - 2

<=>2n - 2 + 8 chia hết 2n - 2

<=>        8 chia hết 2n - 2

<=> 2n - 2 thuộc Ư( 8 )

<=>        2n - 2 thuộc { 1 , -1 , 2 , -2 , 4 , -4 , 8 , -8 } 

<=>          2n thuộc {  3 , 1 , 4 , 0 , 6 , -2 , 10 , -6 } 

<=>              n thuộc { 3/2 , 1/2 , 2 , 0 , 3 , -1 , 5 , -3 } 

Vì n thuộc Z nên n thuộc { 2 , 0 , 3 , -1 , 5 , -3 } 

26 tháng 2 2018

a ) Để 2n + 3/7 nguyên

<=>   2n + 3 chia hết cho 7

<=>   2n + 3 = 7K 

<=>       n = 7K - 3/2 

12 tháng 6 2017

A={ 18;27;36;45;54;63;72;81;90}

G={4;5;6;7;8;9}

V={-2;-1;0;....7}

12 tháng 6 2017

a)   \(A=\left\{18;27;36;45;54;63;72;81;90\right\}\)

b)    \(G=\left\{4;5;6;7;8;9\right\}\)

c)     \(V=\left\{-2;-1;0;1;2;3;4;5;6;7\right\}\)

5 tháng 12 2021

a) 996, 984, 972

5 tháng 12 2021

a) 108

15 tháng 12 2021

a)  p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

Vì pp, qq là số nguyên tố, mà pq+11pq+11 cũng là số nguyên tố

⇒ pqpq chẵn

Giả sử p=2p=2

⇒ 7p+q=14+q7p+q=14+q

⇒ qq lẽ

⇒ q=3;3k+1;3k+2q=3;3k+1;3k+2

Nếu q=3q=3 thì 14+3=1714+3=17 là số nguyên tố

                         2.3+11=172.3+11=17 là số nguyên tố

⇒ Thỏa mãn

Nếu q=3k+1q=3k+1 thì 14+3k+1=15+3k=3.(5+k)14+3k+1=15+3k=3.(5+k)⋮ 33

⇒ Không thỏa mãn

Nếu q=3k+2q=3k+2 thì 2.(3k+2)+11=2.3k+15=3.(2k+5)2.(3k+2)+11=2.3k+15=3.(2k+5)⋮ 33

⇒ Không thỏa mãn

⇒ p=2;q=3p=2;q=3

Giả sử q=2q=2

⇒ pp lẽ vì 7p+27p+2 là số nguyên tố lớn hơn 33

⇒ p=3;3k+1;3k+2p=3;3k+1;3k+2

Nếu p=3p=3 thì 7.3+2=237.3+2=23 là số nguyên tố

                     2.3+11=172.3+11=17 là số nguyên tố

⇒ Thỏa mãn

Nếu p=3k+1p=3k+1 thì 7.(3k+1)+2=7.3k+9=3.(7k+3)7.(3k+1)+2=7.3k+9=3.(7k+3)⋮ 33

⇒ Không thỏa mãn

Nếu p=3k+2p=3k+2 thì $2.(3k+2)+11=2.3k+15= 3.(2k+5)$⋮ 33

⇒ Không thỏa mãn

⇒ p=3;q=2

20 tháng 12 2021

a,a, p có dạng 3k+1;3k+2 hoặc 3k

TH1:p=3k+1⇒p+14=3k+1+14=3k+15⋮3(loại)TH2:p=3k+2⇒p+10=3k+12⋮3(loại)TH3:p=3k⇒p+10=3k+10(chọn)⇒p+14=3k+14(chọn)TH1:p=3k+1⇒p+14=3k+1+14=3k+15⋮3(loại)TH2:p=3k+2⇒p+10=3k+12⋮3(loại)TH3:p=3k⇒p+10=3k+10(chọn)⇒p+14=3k+14(chọn)

Vậy p có dạng 3k thỏa mãn
⇒p=3⇒p=3

Bạn làm tương tự với câu b nha