\(2x-3-\sqrt{4x^2-12x+9}\)

a) Rut gon M

b) Tinh M khi x=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

a)

\(M=2+\sqrt{\left(2x\right)^2-2.2x.3+3^2}\)

\(\Rightarrow M=2+\sqrt{\left(2x-3\right)^2}\)

\(\Rightarrow M=2+2x-3\)

\(\Rightarrow M=2x-1\)

b)

(+) x=5/2

=> \(M=2.\frac{5}{2}-1=5-1=4\)

(+) x= - 1/5

=> \(M=2.\frac{\left(-1\right)}{5}-1=-\frac{2}{5}-1=-\frac{7}{5}\)

11 tháng 8 2016

ê căn (2x-3)^2=|2x-3| xét 2 th ra nhé

11 tháng 8 2016

câu b)  \(\sqrt{-2}\) không xác định

11 tháng 8 2016

a) \(A=4x-\sqrt{8}-\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-\sqrt{8}-\frac{\sqrt{x^2\left(x+2\right)}}{\sqrt{x+2}}=4x-\sqrt{8}-x=3x-\sqrt{8}\)

b) \(x=\sqrt{-2}\) (không thỏa mãn)

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

d) Để biểu thức có nghĩa thì:

\(\left\{\begin{matrix} x+3\geq 0\\ x^2-9\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+3\geq 0\\ (x-3)(x+3)\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+3=0\\ x-3\geq 0 \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-3\\ x\geq 3\end{matrix}\right.\)

e) Để biểu thức có nghĩa thì:

\(\left\{\begin{matrix} x-2\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 2\\ x\neq 5\end{matrix}\right.\)

f) Để biểu thức có nghĩa thì:

\(\left\{\begin{matrix} x^2-9\neq 0\\ 5-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x-3)(x+3)\neq 0\\ x\leq \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x\neq \pm 3\\ x\leq \frac{5}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -3\\ x\leq \frac{5}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

a) Để biểu thức có nghĩa thì:

$-x^2+4x-5\geq 0$

$\Leftrightarrow x^2-4x+5\leq 0$

$\Leftrightarrow (x-2)^2+1\leq 0$

$\Leftrightarrow (x-2)^2\leq -1< 0$ (vô lý). Do đó không tồn tại $x$ để biểu thức có nghĩa.

b) Để biểu thức có nghĩa thì:

\(x^2+2x+2\geq 0\)

\(\Leftrightarrow (x+1)^2+1\geq 0\) (luôn đúng với mọi $x\in\mathbb{R}$)

Vậy mọi giá trị $x\in\mathbb{R}$ thì biểu thức có nghĩa

c) Để biểu thức có nghĩa thì:

$4x^2-12x+9>0\Leftrightarrow (2x-3)^2>0\Leftrightarrow 2x-3\neq 0$

$\Leftrightarrow x\neq \frac{3}{2}$

Vô xem bài 14 để tham khảo nha bạn: https://www.slideshare.net/toanlv1987qn/cu-i-trong-cc-tuyn-sinh-vo-10-mn-ton-h-ni

19 tháng 9 2019

4.a)\(x-2\sqrt{x}+3\)

\(=x-2\sqrt{x}+1+2\)

\(=\left(\sqrt{x}-1\right)^2+2\)

\(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)

\(\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

b)Ta có:

\(x-4\sqrt{y}+13\ge0\)

\(\Leftrightarrow x-4\sqrt{y}\ge-13\)

Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)

Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)

c)Ta có:

\(2x-4\sqrt{y}+6\ge0\)

\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)

\(\Leftrightarrow x-2\sqrt{y}\ge-3\)

Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)

Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)

d)Ta có:

\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)

\(\left(x+1\right)^2\ge0,\forall x\)

\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)

\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)

Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)

19 tháng 9 2019

zài zậy

29 tháng 7 2019

a.

\(B=\left(\frac{x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\left(\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\\ =\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

b. Ta có :

\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\\ =\sqrt{25+2\cdot5\cdot\sqrt{2}+2}-\sqrt{16+2\cdot4\cdot\sqrt{2}+2}\\ =\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\\ =5+\sqrt{2}-4-\sqrt{2}=1\)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{2}{4}=\frac{1}{2}\)

c. Giả sử B>\(\frac{1}{3}\), ta có

\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}>\frac{1}{3}\\ \Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{1}{3}>0\\ \Leftrightarrow\\\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow\frac{2\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\left(luondungvoix>0\right)\)

Vậy.........

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

h)

ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)

k)

ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)

m)

ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$

b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)

c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$

d) ĐK:

\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)

e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$

f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)