Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\) lien tiep la duoc
Chuc bn thanh cong
svác-xơ ngược dấu.
\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)
Tương tự
\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)
\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Cộng lại ta được:
\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng Cauchy, ta có:
\(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}\le\frac{1}{2a^2b+2ab^2}\)
Tượng tự:
\(\frac{1}{b^4+a^2+2a^2b}\le\frac{1}{2a^2b+2ab^2}\)
\(\Rightarrow A\le\frac{2}{2ab\left(a+b\right)}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}=2\)\(\Leftrightarrow\frac{a+b}{ab}=2\Rightarrow a+b=2ab\)
\(\Rightarrow A\le\frac{2}{\left(a+b\right)^2}\)
Áp dụng Schwarzt: \(2=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge a+b\ge2\Rightarrow\left(a+b\right)^2\ge4\)
\(\Rightarrow A\le\frac{2}{4}=\frac{1}{2}\)
Dấu = xảy ra khi a=b=1
Áp dụng bđt cosi ta có :
A < = 1/2a^2b+2/ab^2 + 1/2ab^2+2a^2b
= 1/2ab . (1/a+b + 1/a+b) = 1/2ab . 2/a+b = 1/(a+b).(ab)
< = 1/\(\sqrt{ab}.2.ab\) = 1/2\(\sqrt{ab}^3\)
Có : 2 = 1/a + 1/b >= 2\(\sqrt{\frac{1}{ab}}\)
=> \(\sqrt{\frac{1}{ab}}\)< = 1
=> 1/ab < = 1
=> ab > =1
=> A < = 1/2.1 = 1/2
Dấu "=" xảy ra <=> a=b=1
Vậy GTLN của A = 1/2 <=> a=b=1
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1)\(\frac{1}{2\text{a}}=\frac{1.\text{x^2}}{2\text{a.x}^2}=\frac{x^2}{2\text{ax}^2};\frac{2}{x}=\frac{2.2\text{a}x}{x.2\text{ax}}=\frac{4\text{ax}}{2\text{ax}^2}\)\(;\frac{x^2-2\text{ã}}{2\text{ax}^2}\)giữ nguyên
2) \(\frac{x}{a-2}=\frac{x.3\text{a}}{3\text{a}\left(a-2\right)}=\frac{3\text{ax}}{3\text{a}^2-6\text{a}};\frac{2}{3\text{a}}=\frac{2.\left(a-2\right)}{3\text{a}\left(a-2\right)}=\frac{2\text{a}-4}{3\text{a}^2-6\text{a}};\frac{5\text{a}-4}{3\text{a}^2-6\text{a}}\)giữ nguyên
3) \(\frac{x}{10\text{x}-10}=\frac{x.3\text{x}}{\left(10\text{x}-10\right).3\text{x}}=\frac{3\text{x}^2}{30\text{x}^2-30};\frac{1}{3\text{x}-3}=\frac{1.10\text{x}}{10\text{x}.\left(3\text{x}-3\right)}=\)\(\frac{10\text{x}}{30\text{x}^2-30\text{x}};\frac{9\text{x}-10}{30\text{x}^2-30\text{x}}\)giữ
4) \(\frac{1}{1-a}==\frac{-1}{a-1}=\frac{-1.\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{-a^2-a-1}{a^3-1};\frac{1}{a^2+a+1}=\frac{1.\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a-1}{a^3-1};\frac{a^3+2}{a^3-1}\)giữ nguyên
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ bạn tự xét nhé
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)
Để M thuộc Z thì \(a^2+a+1⋮a-1\)
\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)
\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)
Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)
\(\Rightarrow3⋮a-1\)
\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)
Để M = 7 thì :
\(\frac{a^2+a+1}{a-1}=7\)
\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)
\(\Leftrightarrow a^2+a+1=7a-7\)
\(\Leftrightarrow a^2-6a+8=0\)
\(\Leftrightarrow a^2-2a-4a+8=0\)
\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)
Để M > 0 thì :
\(\frac{a^2+a+1}{a-1}>0\)
Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)
Chứng minh \(a^2+a+1>0\):
Đặt \(B=a^2+a+1\)
\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)
\(\Rightarrow B>0\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)
a) \(M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+a^2-2a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right].\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{\left(a-1\right)^3-\left(1-2a^2+4a\right)+\left(a^2+a+1\right)}{\left(a^2+a+1\right)\left(a-1\right)}.\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{a^3-1}.\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{a^3-1}{a^3-1}.\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{4a^2}{a^3+4a}\)
\(\Leftrightarrow M=\frac{4a}{a^2+4}\)
b) Ta có :
\(\left(a-2\right)^2\ge0\)
\(\Leftrightarrow a^2-4a+4\ge0\)
\(\Leftrightarrow a^2+4\ge4a\)
Dấu " = " xảy ra khi và chỉ khi :
\(\left(a-2\right)^2=0\)
\(\Leftrightarrow a=2\)
Vậy \(Max_M=1\Leftrightarrow a=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn xem lời giải ở đây nhé:
Câu hỏi của AgustD - Toán lớp 9 - Học toán với OnlineMath
\(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\Rightarrow2>=\frac{4}{a+b}\Rightarrow a+b>=2\) (bđt cauchy schwarz adangj engel)
\(a^4+b^2>=2\sqrt{a^4b^2}=2a^2b;a^2+b^4>=2\sqrt{a^2b^4}>=2ab^2;\frac{1}{a}+\frac{1}{b}>=2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}\Rightarrow2>=\frac{2}{\sqrt{ab}}\Rightarrow ab>=1\)(bđt cosi)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}+\frac{1}{a^2+b^4+2a^2b}< =\frac{1}{2a^2b+2ab^2}+\frac{1}{2ab^2+2a^2b}=\frac{2}{2a^2b+2ab^2}=\frac{2}{2ab\left(a+b\right)}\)
\(=\frac{1}{ab\left(a+b\right)}< =\frac{1}{1\cdot2}=\frac{1}{2}\)
dấu = xảy ra khi a=b=1
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left[\frac{1}{a-1}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right]\)
\(M=\frac{a^2+1+a}{a^2+1}:\left[\frac{1}{a-1}-\frac{2a}{\left(a-1\right)\left(a^2+1\right)}\right]\)
\(M=\frac{a^2+1+a}{a^2+1}:\left[\frac{a^2+1}{\left(a-1\right)\left(a^2+1\right)}-\frac{2a}{\left(a-1\right)\left(a^2+1\right)}\right]\)
\(M=\frac{a^2+1+a}{a^2+1}:\frac{a^2+1-2a}{\left(a-1\right)\left(a^2+1\right)}\)
\(M=\frac{a^2+1+a}{a^2+1}:\frac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+1\right)}\)
\(M=\frac{a^2+1+a}{a^2+1}.\frac{\left(a-1\right)\left(a^2+1\right)}{\left(a-1\right)^2}\)
\(M=\frac{a^2+1+a}{a-1}\)
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{\left(a^2+1\right).\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a-1}{a^2+1}\right)\)
\(M=\frac{a^2+a+1}{a^2+1}\cdot\frac{a^2+1}{a-1}=\frac{a^2+a+1}{a-1}\)
p/s: đề là tính M pk ko??