\(M=1+3+3^2+3^3+...+3^{117}+3^{118}+3^{119}\)

Chứng tỏ rằng M chia hết cho 13

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

M=1+3+3^2+......+3^117+3^118+3^119

M=3^0+3^1+3^2+......+3^117+3^118+3^119

M có số hạng là:

(119-0):1+1=120(số)

Vì 120 chia hết cho 3 nên ta chia dãy số M thành các nhóm,mỗi nhóm có 3 số hạng

Ta có:M=3^0+3^1+3^2+......+3^117+3^118+3^119

M=(3^0+3^1+3^2)+......+(3^117+3^118+3^119)

M=3^0.(1+3+3^2)+.......+3^117.(1+3+3^2)

M=3^0.13+......+3^117.13

M=13.(3^0+.....+3^117)

=>M chia hết cho 13

28 tháng 3 2017

Đầu bài sai rồi bạn ơi vì tất cả các số sau số 1 đều chia hết cho 3 mà 1 chia 3 dư 1 nên M chia 3 dư 1

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

20 tháng 7 2017

1=3^0

=>M=3^0 +3+3^2+3^3+...+3^119

=>M chia hết cho 3

8 tháng 5 2018

a) ta có: \(M=1+3+3^2+3^3+...+3^{119}\)

             \(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

             \(M=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{117}.\left(1+3+3^2\right)\)

             \(M=\left(1+3+3^2\right).\left(1+3^3+...+3^{117}\right)\)

            \(M=13.\left(1+3^3+...+3^{117}\right)⋮13\left(đpcm\right)\)

b) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                            \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                             \(=1-\frac{1}{2010}< 1\)

\(\Rightarrow N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< 1\left(đpcm\right)\)

8 tháng 5 2018

a, \(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(1+3^3+3^6+...+3^{117}\right)\)

\(=13.\left(1+3^3+...+3^{117}\right)⋮13\)

b, \(N=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2010.2010}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow N< 1\)

10 tháng 4 2017

M=1+3+3^2+3^3+^3+...+3^118+3^119

  =(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)

 =13+3^3(1+3+3^2)+...+3^117(1+3+3^2)

 =13+3^3.13+..+3^117.13

 =13(1+3^3+...+3^117) chia hết cho 13

Vậy Mchia hết cho 13

10 tháng 4 2017

ai chơi truy kích thì kết bạn vs mình nha 

rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván

21 tháng 10 2017

A = 3 + 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120

3A = 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 + 3121

3A - A = ( 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 + 3121 ) - ( 3 + 3+ 3+ 3+ 3+ ..... +3117 + 3118 + 3119 + 3120 )

2A = 3121 - 3

A = ( 3121 - 3 ) : 2 chia hết cho 2

Vậy A chia hết cho 2

25 tháng 10 2018

A = 3 +32+33+34+35+36+...+3117+3118+3119+3120

A = (3+32) + (33+34) + (35+36)+ ...+ (3177+3118) + (3119+3120)

A= 3 . (1+3) + 33(1+3 )+ 3( 1+3 ) +...+3117 ( 1+3 ) + 3119 ( 1+3 )

A=3. 4 + 3. 4 + 3. 4 + ...+ 3119 . 4

A =4. ( 3+3+ 35 + ... + 3119  )  ⋮ 2

( vì trong tích trên có thừa số 4 , mà trong tích nếu có bất kì số nào đó chia hết cho a thì tích đó chia hết cho a . Vậy tích trên có chữ số 4 vì vậy tích đó chia hết cho 2 )

9 tháng 7 2015

 M=1+3+32+33+...+3118+3119

=(1+3+32)+(33+34+35)+...+(3117+3118+3119)

=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)

=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)

=13+33.13+...+3117.13

=13.1+33.13+...+3117.13

=13.(1+33+3117)

=> M chia hết cho 13

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)

\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)

\(=10+2^4.10+...+2^{48}.10\)

\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)

\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)

1 tháng 11 2018

\(M=2+2^3+2^5+2^7+....+2^{51}.\)

\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)

\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)

\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)

\(=12+2^4.42+....+2^{46}.42\)

\(=12+7.3.2\left(2^4+...+2^{46}\right)\)

\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)

\(=10+7.3.2\left(2^4+....+2^{46}\right)\)

Ta có:  \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7

Suy M không chia hết cho 7