Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x^n-nx+n-1}{\left(x-1\right)^2}=\frac{\left(x^n-1\right)-n\left(x-1\right)}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(x^{n-1}+x^{n-1}+....+x+1-n\right)}{\left(x-1\right)^2}\) (1)
Từ (1) suy ra :
\(L=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+.....+x-\left(n-1\right)}{x-1}\) (2)
\(L=\lim\limits_{x\rightarrow1}\frac{\left(x^{n-1}-1\right)+\left(x^{n-2}-1\right)+.....+\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[\left(x^{n-1}+x^{n-3}+.....+x+1\right)+.....+\left(x+1\right)+1\right]}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left[1+\left(x+1\right)+....+\left(x^{n-2}+x^{n-3}+.....+x+1\right)\right]\)
\(=1+2+....+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)
\(b=\frac{1-5+1}{0}=\frac{-3}{0}=-\infty\)
\(c=\lim\limits_{x\rightarrow1}\frac{x\left(1+2x\right)\left(1+3x\right)+2x\left(1+3x\right)+3x}{x}=\lim\limits_{x\rightarrow1}\left[\left(1+2x\right)\left(1+3x\right)+2\left(1+3x\right)+3\right]=1+2+3=6\)
\(d=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-1}{5x^4+2x}=\frac{4}{0}=+\infty\)
Bài 2:
\(a=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(b=\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)
\(c=\lim\limits_{x\rightarrow0}\frac{x+x^2+...+x^n-n}{x-1}=\frac{-n}{-1}=n\)
\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)=x\left(1+2x\right)...\left(1+nx\right)+\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)\)
\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+\left(1+3x\right)...\left(1+nx\right)\)
\(=...\)
\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx+1\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\frac{x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx}{x}\)
\(=\lim\limits_{x\rightarrow0}\left[\left(1+2x\right)...\left(1+nx\right)+2\left(1+3x\right)...\left(1+nx\right)+...+n\right]\)
\(=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
\(A=\lim\limits_{x\rightarrow0}\frac{\left(x+1\right)^{\frac{1}{3}}-1}{\left(2x+1\right)^{\frac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(x+1\right)^{-\frac{2}{3}}}{\frac{1}{2}\left(2x+1\right)^{-\frac{3}{4}}}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}\)
\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}=\frac{3\sqrt{5}}{0}=+\infty\)
\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(3x+1\right)\left(4x+1\right)}\left(\sqrt{2x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}\left(\sqrt{3x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}-1}{x}\)
Xét \(\lim\limits_{x\rightarrow0}\frac{\sqrt{ax+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\left(ax+1\right)^{\frac{1}{2}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{2}\left(ax+1\right)^{-\frac{1}{2}}}{1}=\frac{a}{2}\)
\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}=\frac{9}{2}\)
\(D=\lim\limits_{x\rightarrow0}\frac{\left(1+4x\right)^{\frac{1}{2}}-\left(1+6x\right)^{\frac{1}{3}}}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\left(1+4x\right)^{-\frac{1}{2}}-2\left(1+6x\right)^{-\frac{2}{3}}}{2x}\)
\(D=\lim\limits_{x\rightarrow0}\frac{-2\left(1+4x\right)^{-\frac{3}{2}}+4\left(1+6x\right)^{-\frac{5}{3}}}{1}=-2+4=2\)
\(E=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-\left(1+bx\right)^{\frac{1}{n}}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}-\frac{b}{n}\left(1+bx\right)^{\frac{1-n}{n}}}{1}=\frac{a-b}{n}\)
Vì câu đó ko phải dạng vô định, nó là 1 giới hạn bình thường.
Mình đoán bạn ghi nhầm đề, đề bài là \(\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}-\sqrt{x+2}}{\sqrt[4]{2x+2}-2}\) thì hợp lý hơn, đây là 1 giới hạn vô định \(\frac{0}{0}\)
\( C = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {3x + 1} \right)}^3} - {{\left( {1 - 4x} \right)}^4}}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {3x + 1} \right)}^3} - 1}}{x} - \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {1 - 4x} \right)}^4} - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{3x\left[ {{{\left( {3x + 1} \right)}^2} + \left( {3x + 1} \right) + 1} \right]}}{x} - \mathop {\lim }\limits_{x \to 0} \dfrac{{ - 4x\left( {2 - 4x} \right)\left[ {{{\left( {1 - 4x} \right)}^2} + 1} \right]}}{x}\\ = \mathop {\lim }\limits_{x \to 0} 3\left[ {{{\left( {3x + 1} \right)}^2} + \left( {3x + 1} \right) + 1} \right] + \mathop {\lim }\limits_{x \to 0} 4\left( {2 - 4x} \right)\left[ {{{\left( {1 - 4x} \right)}^2} + 1} \right] = 25 \)
\( D = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 + x} \right)\left( {1 + 2x} \right)\left( {1 + 3x} \right) - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 + 2x + x + 2{x^2}} \right)\left( {1 + 3x} \right) - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {1 + 3x + 2x} \right)}^2}\left( {1 + 3x} \right) - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{6x + 11{x^2} + 6{x^3}}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {6 + 11x + 6{x^2}} \right)}}{x}\\ = \mathop {\lim }\limits_{x \to 0} 6 + 11x + 6{x^2} = 6 \)
Bài 1:
a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\frac{5x^4}{3x^2}=\frac{5}{3}\)
b. \(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)
c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)x}{x}+\lim\limits_{x\rightarrow0}\frac{\left(1+3x\right)2x}{x}+\lim\limits_{x\rightarrow0}\frac{3x+1-1}{x}=1+2+3=6\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-5}{5x^4+2x}\)
\(=\lim\limits_{x\rightarrow0}\frac{20\left(1+x\right)^3}{20x^3+2}=\frac{20}{2}=10\)
Bài 2:
\(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)
\(a=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{9+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)
\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{9+\sqrt{x+7}}}{x-1}=\frac{29}{36}\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(2-\frac{3}{x}\right)^2.x^3\left(4+\frac{7}{x}\right)^3}{x^3\left(3+\frac{1}{x^3}\right).x^2\left(10+\frac{9}{x^2}\right)}=\frac{2.4}{3.10}=\frac{4}{15}\)
\(c=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+4x}-\left(2x+1\right)+\left(2x+1-\sqrt[3]{1+6x}\right)}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\frac{\frac{-4x^2}{\sqrt{1+4x}+2x+1}+\frac{8x^3+12x^2}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}}{x^2}\)
\(=\lim\limits_{x\rightarrow0}\left(\frac{-4}{\sqrt{1+4x}+2x+1}+\frac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{1+6x}+\sqrt[3]{\left(1+6x\right)^2}}\right)=\frac{-4}{1+1}+\frac{12}{1+1+1}=2\)
\(d=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+6x}\left(\sqrt{1+4x}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{1+6x}-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\frac{4x\sqrt{1+6x}}{x\left(\sqrt{1+4x}+1\right)}+\lim\limits_{x\rightarrow0}\frac{6x}{x\left(\sqrt{1+6x}+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\frac{4\sqrt{1+6x}}{\sqrt{1+4x}+1}+\lim\limits_{x\rightarrow0}\frac{6}{\sqrt{1+6x}+1}=\frac{4}{1+1}+\frac{6}{1+1}=5\)
\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+4x}\left(\sqrt{1+2x}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+4x}-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\frac{2x\sqrt[3]{1+4x}}{x\left(\sqrt{1+2x}+1\right)}+\lim\limits_{x\rightarrow0}\frac{4x}{x\left(\sqrt[3]{\left(1+4x\right)^2}+\sqrt[3]{1+4x}+1\right)}\)
\(=\lim\limits_{x\rightarrow0}\frac{2\sqrt[3]{1+4x}}{\sqrt{1+2x}+1}+\lim\limits_{x\rightarrow0}\frac{4}{\sqrt[3]{\left(1+4x\right)^2}+\sqrt[3]{1+4x}+1}=\frac{2}{1+1}+\frac{4}{1+1+1}=\frac{7}{3}\)
a/ Do \(x\rightarrow-3^+\) nên \(x>-3\Rightarrow x+3>0\Rightarrow\left|x+3\right|=x+3\)
\(\Rightarrow\lim\limits_{x\rightarrow-3^+}\frac{3x+9}{\left|x+3\right|}=\lim\limits_{x\rightarrow-3^+}\frac{3\left(x+3\right)}{x+3}=3\)
b/ \(=\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}\left(1-3\sqrt{x}\right)}{\sqrt{x}\left(4\sqrt{x}-2\right)}=\lim\limits_{x\rightarrow0^+}\frac{1-3\sqrt{x}}{4\sqrt{x}-2}=-\frac{1}{2}\)
Ở câu này \(x\rightarrow0^+\) có nghĩa \(x>0\), nó chỉ để căn thức xác định, ngoài ra ko có gì đặc biệt hết
c/ Tương tự câu c, cũng chỉ để căn thức xác định \(\left(x< 1\right)\)
\(\lim\limits_{x\rightarrow1^-}\frac{\sqrt{1-x}}{\left(1-x\right)\left(x+4\right)}=\lim\limits_{x\rightarrow1^-}\frac{1}{\sqrt{1-x}\left(x+4\right)}=+\infty\)
d/ Chắc bạn ghi nhầm đề, đây ko phải giới hạn dạng vô định (vì tử khác 0, mẫu bằng 0):
\(x\rightarrow\sqrt{2}^-\Rightarrow x< \sqrt{2}\Rightarrow x^4-4< 0\)
\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}^-}\frac{\left|x-2\right|}{x^4-4}=-\infty\)
Ta có \(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m-\left(1+x+x^2+.....+x^{m-1}\right)}{1-x^m}\right)\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)+\left(1-x^2\right)+.....+\left(1-x^{m-1}\right)}{1-x^m}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)\left[1+\left(1+x\right)+.....+\left(1+x+x^2+.....+x^{m-2}\right)\right]}{\left(1-x\right)\left(1+x+x^2+.....+x^{m-1}\right)}\)
\(=\frac{1+2+3+....+\left(m-1\right)}{m}=\frac{\left(m-1\right)m}{2m}=\frac{m-1}{2}\)
\(A=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{1}=\frac{a}{n}\)
\(B=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{\left(1+bx\right)^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{\frac{b}{m}\left(1+bx\right)^{\frac{1-m}{m}}}=\frac{am}{bn}\)
\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+bx}\sqrt[4]{1+cx}\left(\sqrt{1+ax}-1\right)+\sqrt[4]{1+cx}\left(\sqrt[3]{1+bx}-1\right)+\left(\sqrt[4]{1+cx}-1\right)}{x}\)
\(C=\lim\limits_{x\rightarrow0}\sqrt[3]{1+bx}\sqrt[4]{1+cx}.\frac{\sqrt{1+ax}-1}{x}+\lim\limits_{x\rightarrow0}\sqrt[4]{1+cx}.\frac{\sqrt[3]{1+bx}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{1+cx}-1}{x}\)
Từ câu A ta có: \(\lim\limits_{x\rightarrow0}\frac{\sqrt[n]{1+ax}-1}{x}=\frac{a}{n}\)
\(\Rightarrow C=\frac{a}{2}+\frac{b}{3}+\frac{c}{4}\)
Bạn sử dụng định lý L'Hopital cho giới hạn vô định:
\(\lim\limits_{x\rightarrow a}\frac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow a}\frac{f'\left(x\right)}{g'\left(x\right)}\)
Áp dụng công thức khai triển nhị thức Newton, ta có :
\(\left(1+mx\right)^n=1+C_n^1\left(mx\right)+C_n^2\left(mx\right)^2+.....C_n^n\left(mx\right)^n\)
\(\left(1+nx\right)^m=1+C_m^1\left(nx\right)+C_m^2\left(nx\right)+....+C_m^m\left(nx\right)^m\)
Mặt khác ta có : \(C_n^1\left(mx\right)=C_n^1\left(nx\right)=mnx\)
\(C_n^2\left(mx\right)^2=\frac{n\left(n-1\right)}{2}m^2x^2;C_m^2\left(nx\right)^2=\frac{m\left(m-1\right)}{2}n^2x^2;\)
Từ đó ta có :
\(L=\lim\limits_{x\rightarrow0}\frac{\left[\frac{n\left(n-1\right)}{2}m^2-\frac{m\left(m-1\right)}{2}n^2\right]x^2+\alpha_3x^3+\alpha_4x^4+....+\alpha_kx^k}{x^2}\left(2\right)\)
Từ (2) ta có : \(L=\lim\limits_{x\rightarrow0}\left[\frac{mn\left(n-m\right)}{2}+\alpha_3x+\alpha_4x^2+....+\alpha_kx^{k-2}\right]=\frac{mn\left(n-m\right)}{2}\)