Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m - n = 3 => m = 3+ n
Thay vào B ta có
\(B=\frac{3+n-8}{n-5}+\frac{4\left(3+n\right)-n}{3\left(3+n\right)+3}=\frac{n-5}{n-5}+\frac{12+4n-n}{9+3n+3}=1+\frac{3n+12}{3n+12}=2\)
bạn xem tai đây nhé: http://olm.vn/hoi-dap/question/101176.html
\(m-n=3\Leftrightarrow m=n+3\)
Thay vào B ta được :
\(B=\frac{n+3-8}{n-5}=\frac{4\left(n+3\right)-n}{3\left(n+3\right)+3}=\frac{n-5}{n-5}+\frac{3n+12}{3n+12}=1+1=2\)
có m=3 +n -> thay m thành 3+n -> làm như bình thường ->ra
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(=>m=5\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(=>n=3\)
a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=> m =5
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=> n = 3
a, ( 1/2 ) ^ m = ( 1/2) ^5
=> m = 5
b, ( 7/5) ^n = 343 / 125
=> ( 7/5)^n = (7/5) ^ 3
=> n = 3
Đúng cho tui nha
\(a.\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
=>m=5
\(b.\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
=>n=3
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
Từ m-n=3=>m=n+3
Ta có: \(\frac{m-8}{n-3}=\frac{\left(n+3\right)-8}{n-3}=\frac{n-5}{n-5}=1\) (1)
\(\frac{4m-n}{3m+3}=\frac{4.\left(n+3\right)-n}{3.\left(n+3\right)+3}=\frac{4n+12-n}{3n+9+3}=\frac{\left(4n-n\right)+12}{3n+12}=\frac{3n+12}{3n+12}=1\) (2)
Từ (1) và (2) \(\Rightarrow A=1-1=0\)
Vậy A=0