Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng bđt Cauchy ta có
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
b, a(a+2)<(a+1)2
=>a2+2a<a2+2a+1(đúng)
a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)
\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)
mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)
\(\Rightarrow4m+1< 4n+5\)
b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)
\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)
mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)
\(\Rightarrow3-5m>1-5n\)
a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)
Mặt khác: 3b + 5 > 3b + 2 (2)
Từ (1) và (2) suy ra: 3a + 5 > 3b + 2
b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)
Mặt khác: 2 – 4a < 3 – 4a (2)
Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b
a. Ta có: a > b ⇔ 3a > 3b ⇔ 3a + 5 > 3b + 5 (1)
Mặt khác: 3b + 5 > 3b + 2 (2)
Từ (1) và (2) suy ra: 3a + 5 > 3b + 2
b. Ta có: a > b ⇔ -4a < -4b ⇔ 3 – 4a < 3 – 4b (1)
Mặt khác: 2 – 4a < 3 – 4a (2)
Từ (1) và (2) suy ra: 2 – 4a < 3 – 4b
Ta có: m > n ⇒ 3m > 3n (3)
2 > 0 ⇒ 3m + 2 > 3m (4)
Từ (3) và (4) suy ra: 3m + 2 > 3n