\(\left(\frac{x^2+x+10}{x^2-9}-\frac{1}{x-3}\right):\frac{1}{x-3}.\)

a) Tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

\(M=\left(\frac{x^2+x+10}{x^2-9}-\frac{1}{x-3}\right):\frac{1}{x-3}\)   \(ĐKXĐ:x\ne\pm3\)

\(M=\left[\frac{x^2+x+10}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}\right]:\frac{1}{x-3}\)

\(M=\left[\frac{x^2+x+10-x-3}{\left(x-3\right)\left(x+3\right)}\right]:\frac{1}{x-3}\)

\(M=\frac{x^2+7}{\left(x-3\right)\left(x+3\right)}.\left(x-3\right)\)

\(M=\frac{x^2+7}{x+3}\)

vậy \(M=\frac{x^2+7}{x+3}\)

khi \(x=5\)thì \(M=\frac{5^2+7}{5+3}=\frac{25+7}{8}=\frac{32}{8}=4\)

vậy \(M=4\)khi \(x=5\)

10 tháng 8 2021

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

10 tháng 8 2021

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

15 tháng 12 2018

\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)

15 tháng 12 2018

\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)

\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)

==>Sai đề không mem

24 tháng 11 2019

Ta có:

a) M = \(\left(\frac{6x}{x^2-9}-\frac{1}{x+3}+\frac{5}{3-x}\right):\frac{4}{x^2-3x}\)

M = \(\left(\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{x-3}{\left(x+3\right)\left(x-3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\cdot\frac{x^2-3x}{4}\)

M = \(\left(\frac{6x-x+3-5x-15}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x\left(x-3\right)}{4}\)

M = \(\frac{-12.x\left(x-3\right)}{\left(x-3\right)\left(x+3\right).4}\)

M = \(-\frac{3x}{x+3}\)

b) Với x = 2 => M = \(-\frac{3.2}{3+2}=-\frac{6}{5}\)

30 tháng 12 2019

\(e ) Để \)  \(M\)\(\in\)\(Z \)  \(thì\) \(1 \)\(⋮\)\(x +3\)

\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }

\(Lập\)  \(bảng :\)

\(x +3\)\(1\)\(- 1\)
\(x\)\(-2\)\(- 4\)

\(Vậy : Để \)  \(M\)\(\in\)\(Z\)  \(thì\) \(x\)\(\in\)\(- 4 ; - 2\) }

30 tháng 12 2019

e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)

<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}

Lập bảng: 

x + 31-1
  x-2-4

Vậy ....

f) Ta có: M > 0

=> \(\frac{1}{x+3}\) > 0

Do 1 > 0 => x + 3 > 0

=> x > -3

Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2

28 tháng 3 2020

\(M=\frac{x^2-9}{5x-10}:\frac{x^2+3x}{x-2}\)

\(M=\frac{\left(x-3\right)\left(x+3\right)}{5\left(x-2\right)}:\frac{x\left(x+3\right)}{x-2}\)

\(M=\frac{\left(x-3\right)\left(x+3\right)}{5\left(x-2\right)}.\frac{x-2}{x\left(x+3\right)}\)

không bảo rút gọn nhưng mình vẫn rút gọn cho dễ làm nhé :)))

\(M=\frac{\left(x-3\right)\left(x+3\right)\left(x-2\right)}{5\left(x-2\right).x\left(x+3\right)}=\frac{x-3}{5x}\) (1)

a) ĐKXĐ: \(x\ne0;x\ne2;x\ne-3\)

b) thay x = 1/2 vào (1), ta có: \(M=\frac{\frac{1}{2}+3}{5.\frac{1}{2}}=\frac{7}{5}\)

c) \(\frac{x-3}{5x}=\frac{1}{2}\)

<=> 2(x - 3) = 5x

<=> 2x - 6 = 5x

<=> 2x - 6 - 5x = 0

<=> -3x - 6 = 0

<=> -3x = 0 + 6

<=> -3x = 6

<=> x = -2

16 tháng 7 2017

a)
\(A=\left(\frac{1}{x}+\frac{x}{x+1}\right):\left(\frac{x+3}{x^2+x}-\frac{1}{x+1}\right)=\left(\frac{x+1}{x\left(x+1\right)}+\frac{x^2}{x\left(x+1\right)}\right):\left(\frac{x+3}{x^2+x}-\frac{x}{x\left(x+1\right)}\right)\)

\(=\frac{x+1+x^2}{x^2+x}:\frac{x+3-x}{x^2+x}=\frac{x^2+x+1}{x^2+x}.\frac{x^2+x}{3}=\frac{x^2+x+1}{3}\)

b) 2(x-1)=x2-1 <=> 2x-2=x2-1 <=> 0=x2-1+2-2x <=> x2-2x+1=0 <=> (x-1)2=0 <=>x-1=0<=>x=1 thay vào

\(A=\frac{x^2+x+1}{3}=\frac{1^2+1+1}{3}=\frac{3}{3}=1\)

c) \(A=\frac{x^2+x+1}{3}=\frac{1}{3}\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

d)\(-A=-\frac{x^2+x+1}{3}=-\frac{x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}}{3}=-\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{3}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{3}\ge\frac{1}{4}\Rightarrow-A\le-\frac{1}{4}< 0\)

Ta có đpcm

17 tháng 7 2017

phần d chỉ CM -A<0 thôi mà  

bạn giải thích hộ mình với , theo mình nghĩ thì hình như bạn đang làm phương pháp của tìm GTNN GTLN