\(\frac{\sqrt{a}+2}{\sqrt{a}-2}\). Tìm x hữu tỉ để M có giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Ta có \(M=\frac{\sqrt{a}+2}{\sqrt{a}-2}=\frac{\sqrt{a}-2}{\sqrt{a}-2}+\frac{4}{\sqrt{a}-2}=1+\frac{4}{\sqrt{a}-2}\)

Để M nguyên thì \(\frac{4}{\sqrt{a}-2}\)nguyên

Ta có bảng sau:

\(\sqrt{a}\)-21-12-24-4
aLoại1160LoạiLoại

Vậy tại a là 0;16;2 thì M nguyên

6 tháng 10 2018

Đề bài đâu có nói căn a trừ 2 nguyên đâu :)

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

a: \(A=\dfrac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\cdot\dfrac{1-\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+1}\)

b: Thay x=1/9 vào A, ta được:

A=2:(1/3+1)=2:4/3=2x3/4=3/2

19 tháng 12 2016

Nếu đề cho x là số hữu tỉ thì giải như sau : 

Vì x là số hữu tỉ nên ta có thể đặt \(x=\frac{m}{n}\) với điều kiện \(0\le x\ne1\Rightarrow0\le\frac{m}{n}\ne1\) \(\Leftrightarrow\hept{\begin{cases}\frac{m}{n}\ge0\\m\ne n;n\ne0\end{cases}}\)

Khi đó , ta có \(A=\frac{4}{\sqrt{\frac{m}{n}}-1}=\frac{4\sqrt{n}}{\sqrt{m}-\sqrt{n}}\)

A là số nguyên , tức là \(\frac{4\sqrt{n}}{\sqrt{m}-\sqrt{n}}=k\) với \(k\in Z\)

Suy ra \(4\sqrt{n}=k.\left(\sqrt{m}-\sqrt{n}\right)\Leftrightarrow\sqrt{n}.\left(4+k\right)=k.\sqrt{m}\) \(\Rightarrow\frac{\sqrt{m}}{\sqrt{n}}=\frac{4+k}{k}\Rightarrow\frac{m}{n}=\left(\frac{4+k}{k}\right)^2\)  . Bạn gộp các điều kiện lại rồi kiểm tra thử xem ?

19 tháng 12 2016

Điều kiện xác định : \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow}0\le x\ne1\)

Để A nguyên thì \(\sqrt{x}-1\) là ước của 4 . Cần chú ý : \(\sqrt{x}-1\ge-1\) nên \(\left(\sqrt{x}-1\right)\in\left\{-1;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3;5\right\}\Leftrightarrow x\in\left\{0;4;9;25\right\}\)

Vậy ........................................................

Bạn xem lại đề , nếu x là số hữu tỉ thì có vô vàn số  , chẳng hạn \(x=\frac{16}{9}\)