Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1-\(\frac{1}{4}\))+(1-\(\frac{1}{9}\))+(1-\(\frac{1}{16}\))+...+(1-\(\frac{1}{400}\)).
A=19-(\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\))
Ta thấy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}<1\)
=>A>19-1=18(đpcm)
\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(\Rightarrow M=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+....+\frac{20^2-1}{20^2}\)
\(\Rightarrow M=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+....+\frac{20^2}{20^2}-\frac{1}{20^2}\)
\(\Rightarrow M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{20^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{20^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{19\cdot20}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{19}{20}< 1\)
\(\Rightarrow A< 1\)
\(\Rightarrow M>18\)
Xét A= \(\frac{3}{4}\)+ \(\frac{8}{9}\) +...+ \(\frac{399}{400}\)
= (1 - \(\frac{1}{2^2}\)) + (1- \(\frac{1}{3^2}\)) +...+ (1- \(\frac{1}{20^2}\))
= (1+1+1+...+1) - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\)) Bạn phải mở ngoặc có 19 số 1 nha!
= 19 - (\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\))
Đặt B =\(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)+...+ \(\frac{1}{20^2}\) < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +...+ \(\frac{1}{19.20}\) = 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) +...+ \(\frac{1}{19}\) - \(\frac{1}{20}\) = 1 - \(\frac{1}{20}\) = \(\frac{19}{20}\)
=> A= 19 - B= 18+ 1- \(\frac{19}{20}\) >18 => A>18
\(\frac{a}{b}>1\Rightarrow a>b>m\)
Ta có:
\(\frac{a-m}{b-m}=\frac{ab-bm}{\left(b-m\right).b}\)
\(\frac{a}{b}=\frac{ab-am}{\left(b-m\right).b}\)
\(am>bm\left(a>b\right)\)
\(\Rightarrow ab-bm>ab-am\)
\(\Rightarrow\frac{a-m}{b-m}>\frac{a}{b}\left(1\right)\)
\(\frac{a+m}{b+m}=\frac{ab+bm}{\left(b+m\right).b}\)
\(\frac{a}{b}=\frac{ab+am}{\left(b+m\right).b}\)
\(bm< am\left(b< a\right)\)
\(\Rightarrow ab+bm< ab+am\)
\(\Rightarrow\frac{a+m}{b+m}< \frac{a}{b}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a-m}{b-m}>\frac{a}{b}>\frac{a+m}{b+m}\)
+ Do a/b > 1
=> a > b
=> a.m > b.m
=> a.b - a.m < a.b - b.m
=> a.(b - m) < b.(a - m)
=> a/b < a-m/b-m (1)
Do a/b > 1
=> a > b
=> a.m > b.m
=> a.m + a.b > b.m + a.b
=> a.(b + m) > b.(a + m)
=> a/b > a+m/b+m (2)
Từ (1) và (2) => a-m/b-m > a/b > a+m/b+m
Ủng hộ mk nha ☆_☆^_-
thực ra nó rất là dễ. giờ mình mới phát hiện ra chứ bữa trước mình làm cách dài lắm
Ta có :
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)\)
\(=\frac{25}{12}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)>\frac{25}{12}\)( đpcm )
\(a)\)\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(M=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{400-1}{400}\)
\(M=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{400}\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Do từ 2 đến 20 có \(20-2+1=19\) nên :
\(M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(A>\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow\)\(M=19-A>19-\frac{1}{2}+\frac{1}{21}=18,5+\frac{1}{21}>8\)
\(\Rightarrow\)\(M>8\) ( đpcm )
Còn câu b) bn xem lại đề đi, nếu đề đúng thì mk sai :v
Chúc bạn học tốt ~
\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}...+\frac{399}{400}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+\left(1-\frac{1}{25}\right)+...+\left(1-\frac{1}{400}\right)\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{20^2}\right)\)
\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{20^2}\)
\(< P=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{20\cdot21}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow M+N>19-\frac{1}{2}+\frac{1}{21}=\frac{37}{2}+\frac{1}{21}>8\)
b sai đề.chừng nào chữa đề thì làm