K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(M=\left(-a+b\right)-\left(b+c-a\right)+\left(c-a\right)\)

\(=-a+b-b-c+a+c-a\)

\(=\left(-a+a-a\right)+\left(b-b\right)+\left(-c+c\right)\)

\(=-a\)

\(a\) là số âm nên \(-a\) sẽ là số dương.

\(\Rightarrow M=-a\) luôn dương. ( đpcm )

15 tháng 7 2017

Câu này cũng khó

13 tháng 9 2023

a) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ \(\Leftrightarrow a-3\ne0\Leftrightarrow a\ne3\)

b)  \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu tỷ dương \(\Leftrightarrow a-3< 0\Leftrightarrow a< 3\)

c) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số hữu âm \(\Leftrightarrow a-3>0\Leftrightarrow a>3\)

d) \(\dfrac{-5}{a-3}\left(a\inℤ\right)\) là số nguyên đương 

\(\Leftrightarrow a-3\in B\left(5\right)=\left\{-1;-5\right\}\)

\(\Leftrightarrow a\in\left\{2;-2\right\}\)
16 tháng 8 2016

Có x < y => \(\frac{a}{m}\) < \(\frac{b}{m}\) => a < b (vì m > 0)

x = \(\frac{a}{m}\) = \(\frac{2a}{2m}\) - \(\frac{a+a}{2m}\) < \(\frac{a+b}{2m}\) = z

=> x < z (1)

y = \(\frac{b}{m}\) = \(\frac{2b}{2m}\) = \(\frac{b+b}{2m}\) > \(\frac{a+b}{2m}\) (b > a)

=> y > z (2)

Từ (1) và (2) suy ra x < z < y.

16 tháng 8 2016

Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

21 tháng 4 2020

a) Vì x,y,z>0 nên a,b,c>0 (1)

Ta có: a+b-c=x+y+y+z-z-x=2y>0

=> a+b>c. Tương tự ta có b+c>a, c+a>b  (2)

Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c

b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x   =>  y>0

Tương tự: z,x>0

Vậy có các số dương x,y,z tm