K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2014

        M=75.(42013+42012+…..+43+42+1)+25

=75.42013+75.42012+……+75.43+75.42+75.1+25

=75.42013+75.42012+……+75.43+75.42+75+25

=75.42013+75.42012+……+75.43+75.42+100

=3.(25.4).42012+3.(25.4).42011+…..+3.(25.4).42+3.(25.4).4+100

=3.100.42012+3.100.42011+…..+3.100.42+3.100.4+100

=100.(3.42012+3.42011+…..+3.42+3.4+1)

Vì 100 chia het 100 nen 100.(3.42012+3.42011+…..+3.42+3.4+1) chia het 100

Vậy M chia het 100

20 tháng 11 2019

\(A=75\left(4^{2013}+4^{2012}+...+4^2+4+1\right)+25.\)

Đặt \(4^{2013}+4^{2012}+...+4^2+4=B\)

\(\Rightarrow4B=4^{2014}+4^{2013}+...+4^3+4^2\Rightarrow3B=4B-B=4^{2014}-4\Rightarrow B=\frac{4^{2014}-4}{3}\)

\(\Rightarrow A=75\left(B+1\right)+25=75\left(\frac{4^{2014}-4}{3}+1\right)+25\)

\(A=25\left(4^{2014}-4\right)+75+25=25\left(4^{2014}-4\right)+100\)

\(A=25\left(4^{2014}-4+4\right)=25.4^{2014}\) chia hết cho \(4^{2014}\)

6 tháng 12 2014

M=75.(42013+42012+...+43+42+1)+25

=75.42013 + 75.42012 + ...+ 75.4+ 75.4+ 75.1 + 25

=75.4.42012 75.4.42011 +...75.4.4+ 75.4.4 + (75+25)

=300.42012 + 300.42012 +...+ 300.4+ 300.4 + 100

=100.( 3.42012 + 3.42012 +...+ 3.4+ 3.4 + 1) --- điều cần phải chứng minh

22 tháng 9 2019

A= 75×[(42011 - 1)/3] +25

A = 25×(42011- 1) +25

A= 25×4×42010 - 25 +25

A= 100 × 42010

A chia hết cho 100

10 tháng 12 2022

Bài 2:

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)

\(=6\left(5+5^3+...+5^9\right)⋮6\)

 

7 tháng 4 2015

Ta có:M=1+2+22+...+22012+22013=(1+2)+(22+23)+...+(22012+22013)

=3+22.(1+2)+....+22012.(1+2)

=3+22.3+....+22012.3

=3.(1+22+23+...+22012) chia hết cho 3

=>M chia hết cho 3

7 tháng 4 2015

Ta thấy: 1+2=3;   22+23=22.(1+2) =22.3...................; 22012+22013=22012.(1+2)=22012.3

(Tất cả những tổng trên đều chia hết cho 3)

---> (1+2)+(22+23)+......+ (22012+22013)= 3. (1+22+24+...+22012) chia hết cho 3

27 tháng 11 2016

=> B = 75.41993 + 75.41992 + ... + 75.4 + 75 + 25

        = 25.3.4.41992 + 25.3.4.41991 + ... + 25.3.4 + 100

        = 100.3.41992 + 100.3.41991 + ... + 100.3 + 100

        = 100 ( 41992 + 41991 + .... + 3 + 1 ) CHIA HẾT CHO 100

27 tháng 11 2016

vậy cho mình hỏi Đinh Đức Hùng, số 41993 sẽ sao ạ ?

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)