K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

19 tháng 11 2018

1/a/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^9\left(1+2\right)\)

\(=2.3+2^3.3+....+2^9.3\)

\(=3\left(2+2^3+.....+2^9\right)⋮3\)

\(\Leftrightarrow A⋮3\left(đpcm\right)\)

b/ \(A=2+2^2+2^3+....+2^{10}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31\)

\(=31\left(2+2^6\right)⋮31\)

\(\Leftrightarrow A⋮31\left(đpcm\right)\)

2/ Với mọi n là số tự nhiên thì \(n\) có hai dạng :

\(\left[{}\begin{matrix}n=2k\\n=2k+1\end{matrix}\right.\)

+) \(n=2k\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+4\right)\left(2k+7\right)\)

\(2k+4⋮2\)

\(\Leftrightarrow\left(2k+4\right)\left(2k+7\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

+) \(n=2k+1\Leftrightarrow B=\left(n+4\right)\left(n+7\right)=\left(2k+1+4\right)\left(2k+1+7\right)=\left(2k+5\right)\left(2k+8\right)\)

\(2k+8⋮2\)

\(\Leftrightarrow\left(2k+5\right)\left(2k+8\right)⋮2\)

\(\Leftrightarrow B\) là số chẵn

Vậy...

NV
19 tháng 11 2018

1/

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(A=2.3+2^3.3+2^5.5+...+2^9.3=3.\left(2+2^3+...+2^9\right)\)

Do \(3⋮3\Rightarrow A⋮3\)

\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.31+2^6.31=31\left(2+2^6\right)\)

Do \(31⋮31\Rightarrow A⋮31\)

2/ \(B=\left(n+4\right)\left(n+7\right)\)

Nếu n chẵn, đặt \(n=2k\Rightarrow B=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)\)

Do 2 chẵn nên B chẵn

Nếu n lẻ, đặt \(n=2k+1\Rightarrow B=\left(2k+5\right)\left(2k+8\right)=2\left(2k+5\right)\left(k+4\right)\)

2 chẵn nên B chẵn

Vậy B luôn chẵn với mọi n

3/ Đề là B(112) hay B(121) bạn?

15 tháng 7 2015

 

a_)3n+2 - 2n+2 +3n - 2n 

 =(3n+2+3n)+(-2n+2-2n)

=(3n.32+3n.1)+(-2n.22-2n+1)

=3n.(9+1)-2n.(4+1)

=3n.10-2n.5

ta có 3n.10 chia hết cho 10 và 2n.5 chia hết cho 10( vì có thừa số 2 và 5)

=> 3n+2 - 2n+2 +3n - 2n chia hết cho 10.

 

 

 

13 tháng 2 2016

á thế còn câu b thì sao pn mik cug cần

 

17 tháng 11 2015

M=3n.33+3n.3+2n.23+2n.22

   =3n(33+3)+2n(23+22)

   =3m.30+3n.12

   =6(3m.5+3n.2) chia hết cho 6

Vậy M chia hết cho 6 

    

12 tháng 10 2017

Trả lời:

Ta có:M= \(3^{N+3}+3^{N+1}+2^{N+3}+2^{N+2}\)

= \(3^N.3^3+3^N.3^1+2^N.2^3+2^N.2^2\)

=\(3^N.27+3^N.3+2^N.8+2^N.4\)

=\(3^N.\left(27+3\right)+2^N.\left(8+4\right)\)

Hay :\(3^N.30+2^N.12\)

Vì:\(30⋮6\)\(12⋮6\)

Nên : \(3^n.30+2^n.12⋮6\)

Vậy: \(3^{N+3}+3^{N+1}+2^{N+3}+2^{N+2}\)\(⋮\)

12 tháng 10 2017

Xin lỗi ở đoạn cuối cùng là\(⋮\) 6