Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1+3+3^2+3^3+....+3^{47}+3^{48}+3^{49}\)
\(M=\left(1+3+3^2\right)+...+\left(3^{47}+3^{48}+3^{49}\right)\)
\(M=13\left(1+....+17\right)⋮13\left(\text{đ}pcm\right)\)
a: \(M=3\left(1+3^2+3^4\right)+...+3^{95}\left(1+3^2+3^4\right)\)
\(=273\left(1+...+3^{95}\right)⋮13\)
b: \(9M=3^3+3^5+...+3^{101}\)
\(\Leftrightarrow8M=3^{101}-3\)
\(\Leftrightarrow M=\dfrac{3^{101}-3}{8}\)
\(2M+3=\dfrac{3^{101}-3}{4}+3=\dfrac{3^{101}-3+12}{4}=\dfrac{3^{101}+9}{4}\)
a) tổng S bằng
(2014+4).671:2=677 039
b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n
→2n.(n+2013)\(⋮̸\)2
C)M=2+22+23+...+220
=(2+22+23+24)+...+(217+218+219+220)
=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)
=30.1+...+216.(2+22+23+24)
=30.1+...+216.30
=30(1+25+29+213+216)\(⋮\)5
c, M= 2 + 22 + 23 +........220
Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5
Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)
= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )
= 30+24 .30 + 28. 30 +.........+ 216.30
= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5
Vậy M chia hết cho 5
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
a) M=5+53+55+..+5101=5(1+5+52+...+5100)=5(5101-1)/4
b)Đặt A=1+5+52+...+5100=(1+5100)+(5+599)+...+(550+551)=(1+5)A1+(1+5)A2+...+(1+5)A49=6(A1+A2+...+A49) chia hết cho 6
hay M=5A chia hết cho 6
Mà M chia hết cho 5
Hơn nữa ƯCLN(5;6)=1
Suy ra M chia hết cho 60
d ) 5 mũ với bất kì số nào đều bằng 5. VD : 5^101 = (.......5)
suy ra: M = (.....5)
Giải:
a) M = 1+ 3 + 32 + ... + 349
M = (1 + 3 + 32) + ... + (347 + 348 + 349)
M = 1 . (1 + 3 + 32) + ... + 347 . (1 + 3 + 32)
M = 1 . 13 + ... + 347 . 13
M = 13 . (1 + ... + 347)
Vì 13 \(⋮\) 13 nên suy ra 13 . (1 + ... + 347) \(⋮\) 13
Vậy M \(⋮\) 13.
b) M = 1 + 3 + 32 + ... + 349
=> 3M = 3 + 32 + 33 + ... + 350
3M - M = (3 + 32 + 33 + ... + 350) - (1 + 3 + 32 + ... + 349)
=> 2M = 350 - 1
=> M = \(\frac{3^{50}-1}{2}\)
Vậy M = \(\frac{3^{50}-1}{2}\)