\(\left|z-3+4i\right|=\left|z\right|\). Tìm z để \(\left|z\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2023

\(z=x+yi\Rightarrow\sqrt{\left(x-3\right)^2+\left(y+4\right)^2}=\sqrt{x^2+y^2}\)

\(\Rightarrow6x-8y-25=0\)

\(\Rightarrow y=\dfrac{6x-25}{8}\)

\(\Rightarrow\left|z\right|=\sqrt{x^2+\left(\dfrac{6x-25}{8}\right)^2}=\dfrac{5}{8}\sqrt{\left(2x-3\right)^2+16}\ge\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=\dfrac{3}{2};y=-2\Rightarrow z=\dfrac{3}{2}-2i\)

Không tồn tại \(\left|z\right|_{max}\)

6 tháng 4 2017

\(\left|\omega\right|_{min}=1\)

1 tháng 4 2017

a) (3 + 2i)z – (4 + 7i) = 2 – 5i

⇔(3+2i)z=6+2i

<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i

b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z

⇔(7−3i−5+4i)=−2−3i

⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)

c) z2 – 2z + 13 = 0

⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i

d) z4 – z2 – 6 = 0

⇔ (z2 – 3)(z2 + 2) = 0

⇔ z ∈ { √3, - √3, √2i, - √2i}







AH
Akai Haruma
Giáo viên
25 tháng 7 2017

Lời giải:

Chương 4: Số phức

Trên mp tọa độ \(Oxy\) ta xét các điểm \(A(-2,1);B(4,7);C(1,-1)\). Tập hợp các điểm biểu diễn số phức $z$ là $M$

Theo bài ra ta có:

\(|z-(-2+i)|+|z-(4+7i)|=6\sqrt{2}\Leftrightarrow MA+MB=6\sqrt{2}\)

\(AB=\sqrt{(-2-4)^2+(1-7)^2}=6\sqrt{2}\Rightarrow MA+MB=AB\)

Do đó điểm \(M\) nằm trên đoạn thẳng $AB$

Đề bài yêu cầu tìm max min của \(|z-(1-i)|\), tức là tìm max, min của đoạn \(MC\)

Dựa vào hình vẽ, suy ra \(MC_{\min}=d(C,AB)\).

Do biết tọa độ $A,B$ nên dễ dàng viết được PTĐT $AB$ là : \(y=x+3\)

\(\Rightarrow MC_{\min}=d(C,AB)=\frac{|1-(-1)+3|}{\sqrt{2}}=\frac{5\sqrt{2}}{2}\)

\(M\) chỉ chạy trên đoạn $AB$ nên \(MC_{\max}=CA\) hoặc $CB$

Thấy \(CA< CB\Rightarrow CM_{\max}=CB=\sqrt{(4-1)^2+(7+1)^2}=\sqrt{73}\) khi \(M\equiv B\)

Vậy \(\left\{\begin{matrix} |z-1+i|_{\min}=\frac{5\sqrt{2}}{2}\\ |z-i+1|=\sqrt{73}\end{matrix}\right.\)

25 tháng 7 2017

Dạ em cảm ơn.

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Đặt \(z=a+bi\). Ta có: \(|z|\leq 2\Leftrightarrow a^2+b^2\leq 4\)

Có:

\(p=2|z+1|+2|z-1|+|z-\overline{z}-4i|\)

\(=2|(a+1)+bi|+2|(a-1)+bi|+|(a+bi)-(a-bi)-4i|\)

\(=2\sqrt{(a+1)^2+b^2}+2\sqrt{(a-1)^2+b^2}+\sqrt{(2b-4)^2}\)

\(=2\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}+4-2b\)

(do \(a^2+b^2\leq 4\Rightarrow b^2\leq 4\Rightarrow b\leq 2\Rightarrow \sqrt{(2b-4)^2}=4-2b\) )

\(\Leftrightarrow p=2[\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}-b+2]\)

Theo BĐT Mincopxky :

\(p\geq 2(\sqrt{(a+1+1-a)^2+(b+b)^2}-b+2)\)

\(\Leftrightarrow p\geq 2(2\sqrt{b^2+1}-b+2)\)

Xét \(f(b)=2\sqrt{b^2+1}-b+2\) với \(b\in [-2;2]\)

Có: \(f'(b)=\frac{2b}{\sqrt{b^2+1}}-1=0\Leftrightarrow b=\pm \frac{\sqrt{3}}{3}\)

Lập bảng biến thiên ta suy ra \(f(b)_{\min}=f(\frac{\sqrt{3}}{3})=2+\sqrt{3}\)

\(\Rightarrow p\geq 2f(b)\geq 2(2+\sqrt{3})\)

Vậy \(p_{\min}=4+2\sqrt{3}\)

Dấu bằng xảy ra khi \(b=\frac{\sqrt{3}}{3}; \frac{a+1}{1-a}=\frac{b}{b}=1\Rightarrow a=0\)

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó A. \(w=2^{50}i\) B. \(w=-2^{51}\) C. \(w=2^{51}\) D. \(w=-2^{50}i\) 14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\) A. \(\frac{25}{4}\) B. \(\frac{25}{2}\) C. \(\frac{15}{4}\) D. \(\frac{15}{2}\) 10....
Đọc tiếp

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó

A. \(w=2^{50}i\)

B. \(w=-2^{51}\)

C. \(w=2^{51}\)

D. \(w=-2^{50}i\)

14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\)

A. \(\frac{25}{4}\)

B. \(\frac{25}{2}\)

C. \(\frac{15}{4}\)

D. \(\frac{15}{2}\)

10. TÌm 2 số thực \(x\)\(y\) thỏa mãn \(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\) với \(i\) là đơn vị ảo.

A. \(x=-1;\) \(y=-3\)

B. \(x=-1;\) \(y=-1\)

C. \(x=1;\) \(y=-1\)

D.\(x=1;\) \(y=-3\)

6. Hình tròn tâm \(I\left(-1;2\right)\) bán kính \(r=5\) là tập hợp điểm biểu diễn hình học của các số phức \(z\) thỏa mãn

A. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\ge5\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}z=\left(x+1\right)+\left(y-2\right)i\\\left|z\right|=5\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}z=\left(x-1\right)+\left(y+2\right)i\\\left|z\right|\le\sqrt{5}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

3. Xét số phức thỏa mãn \(\left|z-2-4i\right|=\left|z-2i\right|\) . Tìm GTNN của \(\left|z\right|\)

A. 4

B. \(2\sqrt{2}\)

C. 10

D. 8

2
NV
22 tháng 6 2020

10.

\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)

\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

6.

\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)

\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)

\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)

3.

\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)

\(\Leftrightarrow-4x-8y+20=-4y+4\)

\(\Leftrightarrow x=-y+4\)

\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)

\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)

NV
22 tháng 6 2020

17.

\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)

Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)

\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)

\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)

Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)

\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)

\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)

18.

\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)

\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)

\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)

\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)

14 tháng 1 2018

\(VT=\left(a+bi\right)^2+\left(a-bi\right)^2\\ =a^2+2abi-b^2+a^2-2abi-b^2\\ =2a^2-2b^2\\ =2\left(a^2-b^2\right)=VP\)

\(VT=\left(a+bi\right)^2-\left(a-bi\right)^2\\ =a^2+2abi-b^2-\left(a^2-2abi-b^2\right)\\ =a^2+2abi-b^2-a^2+2abi+b^2\\ =4abi=VP\)

\(VT=\left(a+bi\right)^2\left(a-bi\right)^2\\ =\left[\left(a+bi\right)\left(a-bi\right)\right]^2\\ =\left[a^2-\left(bi\right)^2\right]^2\\ =\left(a^2+b^2\right)^2=VP\)

24 tháng 5 2017

Số phức

25 tháng 3 2016

\(a^2=\left|z+\frac{1}{z}\right|^2=\left(z+\frac{1}{z}\right)\left(\overline{z}+\frac{1}{z}\right)=\left|z\right|^2+\frac{z^2+\overline{z}^2}{\left|z\right|^2}+\frac{1}{\left|z\right|^2}\)

                       \(=\frac{\left|z\right|^4+\left(z+\overline{z}\right)^2-2\left|z\right|^2+1}{\left|z\right|^2}\)

Do đó :

\(\left|z\right|^4-\left|z\right|^2\left(a^2+2\right)+1=-\left(z+\overline{z}\right)^2\le0\)

\(\Rightarrow\left|z\right|^2\in\left[\frac{a^2+2-\sqrt{a^4+4a^2}}{2};\frac{a^2+2+\sqrt{a^4+4a^2}}{2}\right]\)

\(\Rightarrow\left|z\right|\in\left[\frac{-a+\sqrt{a^4+4a^2}}{2};\frac{a+\sqrt{a^4+4a^2}}{2}\right]\)

max \(\left|z\right|=\frac{a+\sqrt{a^4+4a^2}}{2}\)

min \(\left|z\right|=;\frac{a+\sqrt{a^4+4a^2}}{2}\)

\(\Leftrightarrow z\in M,z=-\overline{z}\)

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Giải:

Đặt \(z=a+bi\) với $a,b$ là các số thực

Ta có:

\(|z-3+4i|=2\Leftrightarrow |(a-3)+i(b+4)|=2\)

\(\Leftrightarrow (a-3)^2+(b+4)^2=4\)

Vậy tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \((3;-4)\) bán kính \(R=2\)

2 tháng 1 2017

Bài này bạn không nên dùng phương pháp giải tích, dùng hình học cho dễ!

A M1 M2 O M'

Đường thẳng AO cắt mặt cầu (S) tại 2 điểm M1 và M2

Xét một đường tròn (C)= (O;R=3) bất kỳ thuộc (S) và điểm M di động trên (C) và không trùng M1, M2

Không mất tính tổng quát, điểm M có thể đại diện cho mọi điểm trên (S) (trừ M1, M2)

+) Dễ thấy \(\widehat{M_2MM_1}=90^0\),

tia M'M1 nằm giữa tia M'A và M'M2 nên \(\widehat{M_2MA}>\widehat{M_2MM_1}=90^0\)

\(\Rightarrow\widehat{M_2MA}\) là góc tù

\(\Rightarrow\Delta M_2MA\)luôn có cạnh \(AM_2>AM\)

Vậy MA max khi và chỉ khi \(M\equiv M_2\)

tìm điểm M2 bằng cách \(\frac{\overrightarrow{AM_2}}{\overrightarrow{AO}}=\frac{AM_2}{AO}=\frac{8}{5}\Rightarrow M_2\left(\frac{24}{5};\frac{17}{5};\frac{14}{5}\right)\)

+) Dễ thấy \(\widehat{AM_1M}\) là góc tù nên \(\Delta AM_1M\) luôn có \(AM>AM_1\)

Vậy MA min khi và chỉ khi \(M\equiv M_1\)

.......(làm tương tự ý trên để tìm M1 :3 )

5 tháng 1 2017

mk ko hiểu lắm b ạ