\(\left(x+\frac{1}{1\cdot2}\right)\)+\(\left(x+\frac{1}{2\cdot3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

16 tháng 10 2016

a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)

e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)

g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)

h)Tương tự các câu trên

i) x = 0

k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)

l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)

=> x + 1 = 3 => x = 2

16 tháng 10 2016

x.(x+1)=0

suy ra x=0 hoac x+1=0

                               x=0-1

                              x=-1

vay x=0 hoac  x=-1

mấy câu sau cũng làm tương tự

NV
19 tháng 2 2020

\(A=\frac{1}{1.2}-x+\frac{1}{2.3}-x+...+\frac{1}{100.101}-x+100x\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}-100x+100x\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

23 tháng 11 2017

\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) +...+ \(\dfrac{x}{x.(x+1)}\) = \(\dfrac{44}{45}\)

\(\Rightarrow\) 1 - \(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) +...+ \(\dfrac{1}{x}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{44}{45}\)

\(\Rightarrow\) 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{44}{45}\)

\(\Rightarrow\) \(\dfrac{x}{x+1}\) = \(\dfrac{44}{45}\) 

\(\Rightarrow\) \(x=44\)

23 tháng 11 2017

<=> 1/2-1/3+1/3-1/4+...+1/x-1/x+1 = 44/45

<=> 1/2-1/x+1 = 44/45

<=> 1/x+1 = 1/2 - 44/45 = -43/90

=> x+1 = -90/43

=> x = -133/43

k mk nha

18 tháng 11 2019

Ta có

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)   và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\)  nên

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)

\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)

Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)

12 tháng 9 2019

1/ x.(x+1)+1/(x+1).(x+2)+1/(x+2).(x+3)-1/x=1/2016

1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)-1/x=1/2016

1/x-1/(x+3)-1/x=1/2016

(1/x-1/x)-1/(x+3)=1/2016

0-1/(x+3)=1/2016

=>-1/(x+3)=1/2016

=>1/(x+3)=-1/2016

=>x+3=-2016

=>x=-2016-3

x=-2019

Vậy x=-2019

Hok tốt

12 tháng 9 2019

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2016}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2016}\)

\(\Leftrightarrow\frac{-1}{x+3}=\frac{1}{2016}\)

\(\Leftrightarrow x+3=-2016\)

\(\Leftrightarrow x=-2019\)

18 tháng 7 2017

phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:

\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)

vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)

nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)

vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)

\(D=\left|x-2\right|+\left|y+1\right|+3\)

\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)

nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)

vậy \(MinA=3\Leftrightarrow x=2;y=-1\)

18 tháng 7 2017

a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)

Vậy Amin = 0 , khi x = \(-\frac{1}{2}\) 

b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)

Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)

Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)

Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)