Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước tiên ta phải xét đồ thị hàm số gọi là d luôn đi qua một điểm cố định gọi là K
Có y=(m-4)x+m+4
<=> y=mx-4x +m+4 <=>y=m(x+1)-4x+4
Khi x=-1 thì y=8 => d luôn đi qua một điểm cố định K(-1;8)
Gọi A,B là giao điểm của d với trục Ox,Oy
Ta có OA=|m+4/4-m| (1) và OB=|m+4| (2)
Vẽ OH vuông góc AB và OH là khoảng cách từ OH đến d
Ta có 1/OH2 =1/OA2 +1/OB2 (3)
Tìm được đồ thị hàm số của OK là y=-8x
Ta cóOK
Vậy OH đạt trị lớn nhất khi OK=OH => K H hay OK vuông góc với d
Vì đường thẳng OK vuông góc với đường thẳng d nên:
a.a’=-1 <=>-8.(m -4)=-1 <=>m=33/8 (4)
từ (1,2,3,4) =>>>>>>>1/OH2 =1/65 <=>OH=căn 65
Vậy ………..
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
\(2x^2-mx-2m=0\)
a/ \(\Delta=m^2+16m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-16\end{matrix}\right.\)
b/ Gọi \(d_1:\) \(y=4x+b\)
\(A\left(a;a+7\right)\Rightarrow a+7=2a+4\Rightarrow a=3\Rightarrow A\left(3;10\right)\)
\(\Rightarrow10=4.3+b\Rightarrow b=-2\Rightarrow d_1:\) \(y=4x-2\)
\(\left\{{}\begin{matrix}y=mx+2m\\y=4x-2\end{matrix}\right.\)
- Nếu \(\Rightarrow\left(m-4\right)x+2m+2=0\Rightarrow x=\frac{-2m-2}{m-4}\Rightarrow y=\frac{-10m}{m-4}\)
Tự thay 2 giá trị m ở câu a vào để tính ra tọa độ cụ thể
c/ Với\(k\ne2l\ne4\Rightarrow\left\{{}\begin{matrix}k\ne4\\l\ne2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=kx+2k+1\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-2k-3}{k-4}\\y=\frac{-10k-4}{k-4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=2lx+l-2\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-l}{2l-4}\\y=\frac{-4l+4}{l-2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{-2k-3}{k-4}=\frac{-l}{2l-4}\\\frac{-10k-4}{k-4}=\frac{-4l+4}{l-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=...\\l=...\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
xét pt hoành độ giao điểm của \(\left(P\right):y=x^2\) và \(y=10mx-9m\) là
\(x^2=10mx-9m\)
\(\Leftrightarrow x^2-10mx+9m=0\)
\(\Delta'=\left(-5m\right)^2-9m=25m^2-9m\)
để \(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt thì \(\Delta'>0\Leftrightarrow25m^2-9m>0\)
\(\Leftrightarrow m\left(25m-9\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{9}{25}\\m< 0\end{cases}}\)
theo định lí vi ét ta có \(\hept{\begin{cases}x_1+x_2=10m\left(1\right)\\x_1.x_2=9m\left(2\right)\end{cases}}\)
theo bài ra ta có \(x_1-9x_2=0\) \(\left(3\right)\)
từ (3) và (1) ta có hpt \(\hept{\begin{cases}x_1+x_2=10m\\x_1-9x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}10x_2=10m\\x_1-9x_2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=m\\x_1-9m=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_2=m\\x_1=9m\end{cases}}\) (4)
từ \(\left(2\right)\) và \(\left(4\right)\) ta có \(9m.m=9m\)
\(\Leftrightarrow m=1\)
Xét phương trình hoành độ giao điểm:
\(x^2=10mx-9m\Leftrightarrow x^2-10mx+9m=0\) (1)
Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiệm phân biệt.
Suy ra \(\left(-5m\right)^2-9m>0\Leftrightarrow25m^2-9m>0\)
\(\Leftrightarrow\orbr{\begin{cases}m< 0\\m>\frac{9}{25}\end{cases}}\)
Khi đó ta có \(x_1=\sqrt{25m^2-9m}-5m;x_2=-\sqrt{25m^2-9m}-5m\)
Theo bài ra ta có:
\(\orbr{\begin{cases}\sqrt{25m^2-9m}-5m=-9\sqrt{25m^2-9m}-45m\\9\sqrt{25m^2-9m}-45m;x_2=-\sqrt{25m^2-9m}-5m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}10\sqrt{25m^2-9m}=-40m\\10\sqrt{25m^2-9m}=-40m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\left(ktm\right)\\m=1\left(tm\right)\end{cases}}\)
Vậy m = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vẽ tương đối (d1), (d2)
O y x 6 -4 d1 -1 -3 d2
b) Phương trình hoành độ giao điểm của (d1) và (d2):
\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)
\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)
\(\Leftrightarrow\)\(x=\)\(-2\)
\(\Rightarrow\)\(y=3\)
Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)
c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b
(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)
A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)
Thay tọa độ A vào đường thẳng (d) ta có :
1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b
\(\Leftrightarrow\)b = 3
Vậy (d): y =\(\frac{3}{2}\) \(x+3\)
:3