\(\left(O,R\right)\)\(AB=R,CD=R\sqrt{3}\), 2 dây // vs nh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

30 tháng 4 2020

mình không vẽ hình nha

30 tháng 4 2020

a) vì AD là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC

\(\Rightarrow OD\perp BC\)

Mà \(DE\perp OD\)

\(\Rightarrow BC//DE\)

b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)

\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)

suy ra tứ giác ACIK nội tiếp 

c) OD cắt BC tại H

Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)

Xét \(\Delta OHC\)vuông tại H có :

\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\widehat{HOC}=60^o\)

\(\Rightarrow\widehat{BOC}=120^o\)

\(\Rightarrow\widebat{BC}=120^o\)

P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha. 

13 tháng 6 2018

A B C D O M N K H E F I J T P

a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.

Nên tứ giác ACBD là hình vuông.

Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900

=> Tứ giác ACMH nội tiếp đường tròn

Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450 

=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.

b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.

Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900

=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE

Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900

Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF

Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)

=> J là trung điểm của HM  => Đpcm.

c) Trên tia đối của tia DB lấy T sao cho DT=CM.

Gọi P là hình chiếu của A xuống đoạn MN.

Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT

mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900

=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)

=> ^AMN=^ATN (2 góc tương ứng)  hay ^AMP=^ATD

=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).

Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.

Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi

=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.

Vậy...

 ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 

Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!

  • Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 
  • Đang học tại: Trường THCS Lập Thạch
  • Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
  • Điểm hỏi đáp: 16SP, 0GP
  • Điểm hỏi đáp tuần này: 1SP, 0GP
  • Thống kê hỏi đáp
12 tháng 10 2019

Câu cuối là gì nhờ 

A A A B B B M M M C C C D D D O O O H H H K K K E E E F F F I I I a/Vì C là giao điểm 2 tiếp tuyến (O) nên ta có AC=MC,^OCM=1/2 ^ACD

Tương tự thì BD=DM, ^ODC=1/2 ^BDC.Từ đó suy ra AC+BD=CM+DM=CD và ^COD=90

b/Từ kết quả ở câu a thì ta chỉ cần chứng minh CM.DM=R2=OM2

Ta dễ dàng chứng minh được đẳng thức trên vì ta có \(\Delta OCM~\Delta DOM\left(g.g\right)\)

c/Ta có OC là đường trung trực của AM nên suy ra AM vuông góc OC tại H,H là trung điểm AM

Lại có BM vuông góc với OD tại K,K là trung điểm BM và ^COD=90(cmt)

Suy ra OHMK là hcn

d/Từ câu c suy ra ngay OC//BM, mà O là trung điểm AB nên OC là đtb của tam giác ABE

Suy ra C là trung điểm AE

e/MF cắt HK thì phải 

Ta có tam giác AMF có HI//AF,H là trung điểm AM suy ra I là trung điểm MF

f/Gọi T là trung điểm CD, ta dễ thấy (COD) là (T,TO)

Mà ta có TO vuông góc với AB(tính chất đường tb hình thang)

g/ ghi đề dùm

13 tháng 10 2019

Đã sửa đề câu g rồi ạ

24 tháng 11 2017

a gọi I là trung điểm của A=> I thuộc đường tròn (O) vì OI-1/2.)OA=1.2.2R=R= BK
có AB,AC là tiếp tuyến của (O)
=>góc ABO=góc ACO=90 độ
=> tam giác ABO vuông tại B, có BI là đường trung tuyến 
=> BI=OI=IA
có OI=OC=OB
=> tứ giác OBIC là hình thoi 
=> OI là đường phân giác của góc BIC(tính chất hình thoi) hay AI là phân giác góc BAC(1)
lại có ABOC nội tiếp(O) (cmt)
=> AO vuông góc với BC hay AI vuông góc với BC(2), AB=AC(3)
từ (1)(2)(3)=> tam giác ABC đều

24 tháng 11 2017

O A B C D E

a) Ta thấy ngay \(\widehat{BDA}=\widehat{CBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cung cùng chắn một cung)

Vậy nên \(\Delta ABC\sim\Delta ADB\left(g-g\right)\)

b) Do \(\Delta ABC\sim\Delta ADB\Rightarrow\frac{AB}{AD}=\frac{AC}{AB}\Rightarrow AB^2=AD.AC\)

Xét tam giác vuông OBA có \(AB=\sqrt{AO^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

Vậy nên \(AD.AC=AB^2=3R^2\)

c) Ta thấy rằng \(\Delta ABC\sim\Delta ADB\Rightarrow\widehat{ABC}=\widehat{ADB}\)

Vậy thì \(\widehat{BEA}=\widehat{DBE}+\widehat{BDE}=\widehat{ABC}+\widehat{CBE}=\widehat{ABE}\)

Suy ra tam giác ABE cân tại A hay AB = AE.

Do A, B cố định nên AE không đổi.

Vậy khi cát tuyến ACD quay xung quanh A thì E di chuyển trên đường tròn tâm A, bán kính AB.

d)  Ta có AC.AD = 3R2 ; AC + AD = 7R/2

nên ta có phương trình \(AC\left(\frac{7R}{2}-AC\right)=3R^2\)

\(\Leftrightarrow AC^2-\frac{7R}{2}AC+3R^2=0\Leftrightarrow AC=2R\)

\(\Rightarrow AD=\frac{3R}{2}\)