\(\left(a+b+c\right)^2=a^2+b^2+c^2\) và \(a,b,c\ne0\). Ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

 \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ca\right)=0\)

\(\Rightarrow ab+bc+ca=0\)

\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab\left(\frac{1}{a}+\frac{1}{b}\right)}=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab\left(-\frac{1}{c}\right)}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)

3 tháng 9 2020

                      Bài làm :

Ta có :

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ac=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)

\(\Leftrightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\left(1\right)\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\left(2\right)\)

Thay (1) vào (2) ; ta được :

\(\frac{1}{a^3}+\frac{1}{b^3}-\frac{3}{abc}=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

=> Điều phải chứng minh

3 tháng 9 2020

Ta có \(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2ac+2bc=0\)

\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow ab+ac+bc=0\)

Ta lại có giả sử

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\frac{3}{abc}\)

\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)

\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3.a^2b^2c^2\)

\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3-3.a^2b^2c^2=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ac\right)-3ab^3c\left(-ac\right)-3a^2b^2c^2=0\)

\(\Leftrightarrow0+3a^2b^2c^2-3a^2b^2c^2+0=0\)

\(\Leftrightarrow0=0\left(lđ\right)\)

Vậy bất đẳng thức được chứng minh 

16 tháng 7 2017

b. Sử dụng các hằng đẳng thức

 \(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)

và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Do (a - b) + (b - c) + (c - a) =  0 nên áp dụng hđt  \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:

\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)

16 tháng 7 2017

Bài 1 :

\(b,ax^2+3ax+9=a^2\) 

\(\Leftrightarrow a^2x+3ax+9-a^2=0\) 

\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\) 

\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)

Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\) 

\(\Leftrightarrow ax=a-3\) 

Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\) 

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

26 tháng 3 2019

Có: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ac=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)(do a,b,c khác 0)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Suy ra: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{3}{abc}\)(vì \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\))

Vậy...........

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

17 tháng 3 2019

Ta có: abc = 1, thế vào ta được:

\(\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\)

\(=\frac{b^2c^2}{a^2bc\left(b+c\right)}+\frac{c^2a^2}{b^2ac\left(c+a\right)}+\frac{a^2b^2}{c^2ab\left(a+b\right)}\)

Áp dụng BĐT Cauchy - Schwarz dạng Engel, ta có:

\(VT\ge\frac{\left(bc+ca+ac\right)^2}{abc\left(2ab+2bc+2ca\right)}=\frac{\left(bc+ca+ac\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

22 tháng 12 2019

BĐT Cauchy-Schwarz dạng Engel là gì vậy bn?

Nhờ bn giải thích dùmhaha