K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

C' C B N B' D' A' A D M b a

Đặt \(\overrightarrow{AB}=\overrightarrow{a}\) , \(\overrightarrow{AD}=\overrightarrow{b}\) ,\(\overrightarrow{AA'}=\overrightarrow{c}\) 

Với \(\begin{cases}\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|=1\\\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\end{cases}\)

Suy ra \(\overrightarrow{A'C}=\overrightarrow{AC}-\overrightarrow{AA'}=\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}\)

Từ giả thiết suy ra \(\frac{AM}{AD}=\frac{B'N}{B'B}\)

Do đó

\(\overrightarrow{AM}=k.\overrightarrow{b}\) , \(\overrightarrow{AN}=\overrightarrow{a}+\left(1-k\right).\overrightarrow{c}\)

Ở đây, \(k=\frac{AM}{AD}=\frac{B'N}{B'B}\)

Suy ra :

\(\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\overrightarrow{a}-k.\overrightarrow{b}+\left(1-k\right).\overrightarrow{c}\)

Khi đó :

\(\overrightarrow{MN}.\overrightarrow{A'C}=\left(\overrightarrow{a}-k.\overrightarrow{b}+\left(1-k\right).\overrightarrow{c}\right).\left(\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}\right)\)

 

                  \(=1-k+k-1=0\)

Do đó : \(MN\perp A'C\)

18 tháng 3 2016

A A B D C H N M  

Ta cần chứng minh \(\overrightarrow{MN}.\overrightarrow{AM}=0\)

Đặt \(\frac{BM}{MH}=\frac{CN}{ND}=k\), khi đó \(\overrightarrow{MB=}-k\overrightarrow{MH}\) , \(\overrightarrow{NC=}-k\overrightarrow{ND}\)

Suy ra \(\left(1+k\right)\overrightarrow{AM}=\overrightarrow{AB}+k\overrightarrow{AH}\)

và \(\left(1+k\right)\overrightarrow{MN}=\overrightarrow{BC}+k\overrightarrow{HD}\)

Suy ra :

\(\left(1+k\right)^2\overrightarrow{MN}.\overrightarrow{AM}=k\left(\overrightarrow{AB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{HB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)

                               \(=k\left(\overrightarrow{-AH^2}+\overrightarrow{AH}.\overrightarrow{AD}\right)\)

                               \(=k\overrightarrow{AH}.\overrightarrow{HD}=0\)

Suy ra điều phải chứng minh

31 tháng 3 2017

Giải bài 7 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 105 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

23 tháng 3 2016

Đặt :  \(\overrightarrow{BA}=\overrightarrow{a},\overrightarrow{BB'}=\overrightarrow{b,}\overrightarrow{BC}=\overrightarrow{c}\)

Ta có : \(\overrightarrow{BD'}=\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)

Do MM//BD' nên tồn tại số thực k sao cho \(\overrightarrow{MN}=k\overrightarrow{BD'}\)

hay :

 \(\overrightarrow{MN}=k\overrightarrow{a}+k\overrightarrow{b}+k\overrightarrow{c}\) (1)

Đặt 

\(\frac{MC}{AC}=x,\frac{C'N}{C'D}=y;x,y\in\left(0;1\right)\)

Ta có :

\(\overrightarrow{AC}=\overrightarrow{c}-\overrightarrow{a,}\overrightarrow{C'D}=\overrightarrow{a}-\overrightarrow{b,}\)

Suy ra : \(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CC'}+\overrightarrow{C'N}\)

                    \(=\overrightarrow{xAC}+\overrightarrow{CC'}+\overrightarrow{yC'N}\)

                    \(=x\left(\overrightarrow{c}-\overrightarrow{a}\right)+\overrightarrow{b}+y\left(\overrightarrow{a}-\overrightarrow{b}\right)\)

                    \(=\left(y-x\right)\overrightarrow{a}+\left(1-y\right)\overrightarrow{b}+x\overrightarrow{c}\) (2)

Từ (1) và (2) suy ra :

\(k\overrightarrow{a}+k\overrightarrow{b}+k\overrightarrow{c}=\left(y-x\right)\overrightarrow{a}+\left(1-y\right)\overrightarrow{b}+x\overrightarrow{c}\)

\(\Leftrightarrow\left(k+x-y\right)\overrightarrow{a}+\left(k+y-1\right)\overrightarrow{b}+\left(k-x\right)\overrightarrow{c}=\overrightarrow{0}\) (3)

Do \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) không đồng phửng nên (3) tương đương với

\(\begin{cases}k+x-y=0\\k+y-1=0\\k-x=0\end{cases}\)  \(\Leftrightarrow\begin{cases}x=\frac{1}{3}=k\\y=\frac{2}{3}\end{cases}\)

Vậy với \(3\overrightarrow{MC}=\overrightarrow{AC,}3\overrightarrow{C'N}=2\overrightarrow{C'D}\) 

thì MN//BD' và khi đó \(\frac{MN}{BD'}=\frac{1}{3}\)

 

31 tháng 3 2017

Hướng dẫn.

(h.3.21)

a)

=> AB ⊥ CD.
b)

Suy ra

Ta có => AB ⊥ MN.

Chứng minh tương tự được CD ⊥ MN.


 

31 tháng 3 2017

Giải bài 9 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 9 trang 92 sgk Hình học 11 | Để học tốt Toán 11

11 tháng 3 2020

tại sao lại nhân 2 vô nơi(2) vậy bạn