K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

Gọi F là trung điểm của AA’. Trong mặt phẳng (AA'H) kẻ đường trung trực của AA’ cắt d tại I. Suy ra I là tâm mặt cầu ngoại tiếp tứ diện A'ABC và bán kính R = IA

Ta có:  A E I ^ = 60 o , E F = 1 6 A A ' = a 6

I F = E F . tan 60 o = a 3 6 R = A F 2 + F I 2 = a 3 3

Đáp án C

10 tháng 3 2019

Đáp án C

Gọi F là hình chiếu của A' lên mp (ABC), Nên góc A ' A F ^  là góc tạo bởi cạnh bên của AA' với (ABC),  ⇒ A ' A F ^ = 30 0 ⇒ A F = A A ' cos 30 0 = 3 2 a ⇒

 F là trung điểm của BC  , gọi D,E là hình chiếu của F, B lên AC,H là hình chiếu của F lên AD. Dễ dàng chứng minh được FH là hình chiếu của F trên (ACC'A'), Ta có

d B , A C C ' A ' = 2 d F , A C C ' A ' = 2 F H .

A ' F = A A ' . c o s 30 0 = 1 2 a ; F D = 1 2 B E = 3 4 a

1 F H 2 = 1 A F 2 + 1 F D 2 ⇒ F H = a 21 7

8 tháng 1 2018

Đáp án đúng : B

22 tháng 9 2018

Đáp án D.

Gọi H là trọng tâm của tam giác ABC, từ giả thiết suy ra  B ' H ⊥ A B C   .

Khi đó 

B B ' , A B C ^ = B B ' , B H ^ = B ' B H ^ = 60 °

Ta có 

B B ' = a ⇒ B H = B B ' . cos B ' B H ^ = a . cos 60 ° = a 2 , B ' H = B ' B 2 − B H 2 = a 3 2

Gọi M là trung điểm BC, suy ra  B H = 2 3 B M ⇒ B M = 3 2 B H = 3 2 . a 2 = 3 a 4   .

Đặt  A C = x > 0 ⇒ B C = A C . tan B A C ^ = x . tan 60 ° = x 3 ⇒ A B = A B 2 + A C 2 = 2 x   .

Lại có 

B M = B C 2 + C M 2 = B C 2 + A C 2 4 = 3 x 2 + x 2 4 = x 13 2 = 3 a 4 ⇒ x = 3 a 2 13

  ⇒ A C = 3 a 2 13 , B C = 3 3 a 2 13 , A B = 6 a 2 13 ⇒ S Δ A B C = 1 2 A C . B C = 9 3 a 2 104

(đvdt).

Vậy V A ' A B C = 1 3 B ' H . S Δ A B C = 1 3 . a 3 2 . 9 3 a 2 104 = 9 a 3 208  (đvtt).

16 tháng 12 2019

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

10 tháng 11 2018

Gọi O là trung điểm cạnh A B ⇒ A ' O ⊥ ( A B C )   Lập hệ trục toạ độ Oxyz với các tia Ox, Oy, Oz lần lượt trùng với các tia OC, OB, OA’. Toạ độ các đỉnh là o(0;0;0), 

Suy ra  

Vậy 


Chọn đáp án A.

Cách 2: Có thể dùng công thức thể tích tứ diện cho TH đặc biệt: 

Chọn đáp án A.

29 tháng 8 2018

Đáp án C

Do góc giữa hai mặt phẳng (AB'C') và (ABC) bằng  60 °

Suy ra A B ' C ' ; A B C ^ = 60 °  

Dựng H K ⊥ B ' C ' , do A H ⊥ B ' C ' ⇒ B ' C ' ⊥ A K H  

Do đó  A K H ^ = 60 °

Mặt khác B ' C ' = a 3 , sin A ' B ' C ' ^ = A ' C ' B ' C ' = 2 3  

Suy ra  H K = H B ' sin B ' ^ = a 2 2 3 ; A H = H K tan 60 ° = a 2 2  

Do  C ' H = A ' H 2 + A ' C ' 2 = 3 a 2 ⇒ r H B ' C ' = H C ' 2 sin H B ' C ' ^ = 3 a 6 8  

Áp dụng công thức tính nhanh R = r 2 + A H 2 4 = a 62 8 .