Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi F là trung điểm của AA’. Trong mặt phẳng (AA'H) kẻ đường trung trực của AA’ cắt d tại I. Suy ra I là tâm mặt cầu ngoại tiếp tứ diện A'ABC và bán kính R = IA
Ta có: A E I ^ = 60 o , E F = 1 6 A A ' = a 6
I F = E F . tan 60 o = a 3 6 R = A F 2 + F I 2 = a 3 3
Đáp án C
Đáp án C
Gọi F là hình chiếu của A' lên mp (ABC), Nên góc A ' A F ^ là góc tạo bởi cạnh bên của AA' với (ABC), ⇒ A ' A F ^ = 30 0 ⇒ A F = A A ' cos 30 0 = 3 2 a ⇒
F là trung điểm của BC , gọi D,E là hình chiếu của F, B lên AC,H là hình chiếu của F lên AD. Dễ dàng chứng minh được FH là hình chiếu của F trên (ACC'A'), Ta có
d B , A C C ' A ' = 2 d F , A C C ' A ' = 2 F H .
A ' F = A A ' . c o s 30 0 = 1 2 a ; F D = 1 2 B E = 3 4 a
1 F H 2 = 1 A F 2 + 1 F D 2 ⇒ F H = a 21 7
Đáp án D.
Gọi H là trọng tâm của tam giác ABC, từ giả thiết suy ra B ' H ⊥ A B C .
Khi đó
B B ' , A B C ^ = B B ' , B H ^ = B ' B H ^ = 60 °
Ta có
B B ' = a ⇒ B H = B B ' . cos B ' B H ^ = a . cos 60 ° = a 2 , B ' H = B ' B 2 − B H 2 = a 3 2
Gọi M là trung điểm BC, suy ra B H = 2 3 B M ⇒ B M = 3 2 B H = 3 2 . a 2 = 3 a 4 .
Đặt A C = x > 0 ⇒ B C = A C . tan B A C ^ = x . tan 60 ° = x 3 ⇒ A B = A B 2 + A C 2 = 2 x .
Lại có
B M = B C 2 + C M 2 = B C 2 + A C 2 4 = 3 x 2 + x 2 4 = x 13 2 = 3 a 4 ⇒ x = 3 a 2 13
⇒ A C = 3 a 2 13 , B C = 3 3 a 2 13 , A B = 6 a 2 13 ⇒ S Δ A B C = 1 2 A C . B C = 9 3 a 2 104
(đvdt).
Vậy V A ' A B C = 1 3 B ' H . S Δ A B C = 1 3 . a 3 2 . 9 3 a 2 104 = 9 a 3 208 (đvtt).
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Lời giải:
a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$
Vì \(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)
Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$
b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).
Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)
Vì \((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).
Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)
\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)
c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$
Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$
$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)
\(\Leftrightarrow 2-2a+2b=13-4a-6b\)
\(\Leftrightarrow 11-2a-8b=0(2)\)
Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)
con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào
Gọi O là trung điểm cạnh A B ⇒ A ' O ⊥ ( A B C ) và Lập hệ trục toạ độ Oxyz với các tia Ox, Oy, Oz lần lượt trùng với các tia OC, OB, OA’. Toạ độ các đỉnh là o(0;0;0),
Suy ra
Và
Vậy
Chọn đáp án A.
Cách 2: Có thể dùng công thức thể tích tứ diện cho TH đặc biệt:
Chọn đáp án A.
Đáp án C
Do góc giữa hai mặt phẳng (AB'C') và (ABC) bằng 60 °
Suy ra A B ' C ' ; A B C ^ = 60 °
Dựng H K ⊥ B ' C ' , do A H ⊥ B ' C ' ⇒ B ' C ' ⊥ A K H
Do đó A K H ^ = 60 °
Mặt khác B ' C ' = a 3 , sin A ' B ' C ' ^ = A ' C ' B ' C ' = 2 3
Suy ra H K = H B ' sin B ' ^ = a 2 2 3 ; A H = H K tan 60 ° = a 2 2
Do C ' H = A ' H 2 + A ' C ' 2 = 3 a 2 ⇒ r H B ' C ' = H C ' 2 sin H B ' C ' ^ = 3 a 6 8
Áp dụng công thức tính nhanh R = r 2 + A H 2 4 = a 62 8 .
Đáp án đúng : C