K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chúng ta sẽ chia thành 3 khối như sau:

A.A'B'C', B'.ABC và C.A'B'C'

21 tháng 8 2023

tham khảo:

Khám phá 5 trang 79 Toán 11 tập 2 Chân trời

Ba tứ diện A'.ABC, C.A'B'B, C.A'B'C' có cùng chiều cao và diện tích đáy.

17 tháng 10 2019

Đáp án C

Ta có thể tích của khối lăng trụ: V= h.Sđáy= 6.10 = 60 cm3→ Đáp án C

7 tháng 5 2019

Đáp án D

22 tháng 9 2023

a) Gọi \(I\) là trung điểm của \(BC\).

Tam giác \(ABC\) đều \( \Rightarrow AI \bot BC\)

Tam giác \(A'BC\) cân tại \(A' \Rightarrow A'I \bot BC\)

\( \Rightarrow \left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \left( {A'I,AI} \right) = \widehat {AI{\rm{A}}'} = {60^ \circ }\)

Tam giác \(ABC\) đều \( \Rightarrow AI = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow AA' = AI.\tan \widehat {AI{\rm{A}}'} = \frac{{3a}}{2}\)

b) \({S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}\)

\({V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{3{a^3}\sqrt 3 }}{8}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Vì hình chóp A’.ABC có A'A = A'B = A'C và đáy ABC là tam giác đều nên hình chóp A’.ABC đều.

Gọi F là hình chiếu của A’ trên (ABC) nên F là tâm của đáy ABC là tam giác đều do đó F cũng là trọng tâm của tam giác ABC.

Gọi AF cắt BC tại D

Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)

Mà F là trọng tâm nên \(AF = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)

Xét tam giác A’AF vuông tại F có

\(A'F = \sqrt {A'{A^2} - A{F^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)

Diện tích tam giác đều ABC là \(S = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối lăng trụ là \(V = A'F.S = \sqrt {{b^2} - \frac{{{a^2}}}{3}} .\frac{{{a^2}\sqrt 3 }}{4}\)

22 tháng 1 2018

9 tháng 6 2018

Đáp án A

11 tháng 5 2018

Đáp án B

Hạ 

Vì 

10 tháng 4 2019

Đáp án C

Có 3 phương án đúng: i, iii, iv.

19 tháng 5 2017