Cho khối hộp hình chữ nhật $ABCD.A'B'C'D'$ có đáy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2

Gọi cạnh đáy hình vuông là x.

Áp dụng định lý Pitago cho tam giác ABC vuông tại B, ta có: AC² = AB² + BC² (2√3a)² = x² + x² 12a² = 2x² x² = 6a² x = a√6 Gọi O là giao điểm của AC và BD. Góc nhị diện [C', BD, C] là góc giữa đường thẳng C'O và mặt phẳng (ABCD).

Kẻ C'H vuông góc với BD tại H. Khi đó góc C'OH = 60°. Trong tam giác vuông COD, ta có: OC = (1/2)AC = (1/2) * 2√3a = √3a

Trong tam giác vuông C'OH, ta có: tan(C'OH) = C'H / OH tan(60°) = C'H / (OC/2) (vì H là trung điểm OB) √3 = C'H / (√3a / 2) C'H = (3a) / 2 Vậy chiều cao của khối hộp là C'C = C'H = (3a) / 2

Thể tích khối hộp V = diện tích đáy * chiều cao V = (a√6)² * (3a/2) = 6a² * (3a/2) = 9a³ Kết luận: Thể tích của khối hộp chữ nhật đã cho là 9a³.

24 tháng 2 2019

Đáp án A

Theo định lí 3 đường vuông góc, ta có

 

Ta cũng có HKAM là hình chữ nhật, đặt A'H = h ta có

6 tháng 2 2021

Tao có: \(\overrightarrow{BC}.\overrightarrow{AD}=\overrightarrow{BC}\left(\overrightarrow{DC}+\overrightarrow{CA}\right)=\overrightarrow{CB}.\overrightarrow{CD}-\overrightarrow{CB}.\overrightarrow{CA}\)

\(=\frac{1}{2}\left(CB^2+CD^2-BD^2\right)-\frac{1}{2}\left(CB^2+CA^2-AB^2\right)\)

\(=\frac{1}{2}\left(AB^2+CD^2-BD^2-CA^2\right)\)

\(\Rightarrow\cos\left(\overrightarrow{BC},\overrightarrow{DA}\right)=\frac{1}{2}.\frac{c^2+c'^2-b^2-b'^2}{2aa'}\)

21 tháng 7 2017

6 tháng 11 2018

23 tháng 11 2018

Đáp án A

3 tháng 7 2018

A

27 tháng 6 2017

4 tháng 2 2019