K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

Thay a,b,c lần lượt vào biểu thức...

Tính được kết quả:

a) A= \(-\frac{7}{10}\)

b) B= \(-\frac{2}{7}\)

c) C= 0

20 tháng 3 2016

a) Thay a= \(-\frac{6}{5}\)vào BT A ta có:

\(\left(-\frac{6}{5}\right).\frac{1}{2}-\left(-\frac{6}{5}\right).\frac{2}{3}+\left(-\frac{6}{5}\right).\frac{3}{4}\)\(-\frac{7}{10}\)

Các bài dưới lần lượt thế thôi bạn

4 tháng 2 2016

lớp mấy vậy bạn

4 tháng 2 2016

40 - - là s z 

17 tháng 6 2019

15.

Ta  có \(a+b+c+ab+bc+ac=6\)

Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)

=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)

=> \(a+b+c\ge3\)

\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)

17 tháng 6 2019

Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành

\(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)

Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)

Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)

                                     \(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)

Tóm lại bđt được chứng minh

Dấu "=": tại a=b=c

3 tháng 4 2016

Câu hỏi nài có trên OLM  rồi .

23 tháng 3 2016

Từ dãy tỉ số bằng nhau đó, ta được:

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

hay \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

Do đó,  \(\frac{a+b+c+d}{a}=4\) => a=\(\frac{a+b+c+d}{4}\)

               \(\frac{a+b+c+d}{b}=4\) =>b=\(\frac{a+b+c+d}{4}\)

               \(\frac{a+b+c+d}{c}=4\) =>c=\(\frac{a+b+c+d}{4}\)

              \(\frac{a+b+c+d}{d}=4\) => d=\(\frac{a+b+c+d}{4}\)

=>a=b=c=d

a+bc+d

Do đó, M=\(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

Vậy M có giá trị là 4

10 tháng 3 2016

Chưa học

a: Ta có: \(2x^3-5x^2+8x-3=0\)

\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)

=>2x-1=0

hay x=1/2

9 tháng 3 2016

lam nhanh giup minh nha minh se tick cho

9 tháng 3 2016

nhiều bài quá mình chỉ làm được bài 1,3,4,5

bài 2 mình đang suy nghĩ

bạn có thể vào Hỏi đáp Toánđể hỏi bài !

4 tháng 3 2018

có sai đề ko

mk làm ko đc

4 tháng 3 2018

mk nghĩ đây là đề đúng

\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\\\dfrac{b}{1+c^2}=b-\dfrac{bc^2}{1+c^2}\\\dfrac{c}{1+a^2}=c-\dfrac{ca^2}{1+a^2}\end{matrix}\right.\)

Áp dụng bđt AM-GM ta có:

\(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)

\(\Rightarrow a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\) (1)

C/m tg tự ta có:

\(\left\{{}\begin{matrix}b-\dfrac{bc^2}{1+c^2}\ge b-\dfrac{bc}{2}\\c-\dfrac{ca^2}{1+a^2}\ge c-\dfrac{ac}{2}\end{matrix}\right.\) (2)

Chứng minh điều sau:\(ab+bc+ca\le3\)

Ta có:

\((a+b+c)^2\ge3(ab+bc+ca)\)

\(\Leftrightarrow9\ge3ab+3bc+3ca\)

\(\Leftrightarrow ab+bc+ca\le3\)

Từ (1) và (2)

\(\Rightarrow VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\)

\(ab+bc+ca\le3\)

Nên \(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)

=> ĐPCM