Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S A B M N C
Dùng định lý hàm số Cosin tính được \(MN=2a\sqrt{3}\)
\(AM=2a\sqrt{2},AN=2a\). Tam giác vuông SAC có SC=2SA nên góc ASC =60 độ suy ra tam giác AMN vuông tại A.
Gọi H là trung điểm của MN, vì SA=SM=SN và tam giác AMN vuông tại A \(\Rightarrow SH\perp\left(AMN\right)\), tính được SH=a
Tính được \(V_{S.AMN}=\frac{2\sqrt{2}a^3}{3}\)
\(\frac{V_{S.AMN}}{V_{S.ABC}}=\frac{SM.SN}{SB.SC}=\frac{1}{3}\) \(\Rightarrow V_{S.ABC}=2\sqrt{2}a^3\)
Vậy d(C;(SAB)) =\(\frac{3V_{S.ABC}}{S_{\Delta SAB}}=\frac{6a^3\sqrt{2}}{3a^2}=2a\sqrt{2}\)
Chọn D.
Gọi là hình chiếu vuông góc của A lên mp (SBC) . Gọi I, K lần lượt là hình chiếu vuông góc của H lên SB và SC.
Ta có
Chứng minh tương tự ta được SC ⊥ SK
∆ SAI = ∆ SAK (cạnh huyền – góc nhọn) => SI = SK
Khi đó ∆ SHI = ∆ SHK (cạnh huyền – cạnh góc vuông) => HI = HK. Do đó SH là đường phan giác trong của BSC, nên HSI = 30 °
Trong tam giác vuông SAI,
Trong tam giác vuông HIS,
Khi đó
Vậy
Cách 2: Sử dụng công thức tính nhanh
Nếu khối chóp S.ABC có thì
Áp dụng: Với
Cách 3:
Trên các cạnh SB, SC lần lượt lấy các điểm B’, C’ sao cho SB' = SC' = SA = a 2
Khi đó chóp S.AB'C' là khối chóp tam giác đều. Đồng thời ASB = BSC = CSA = 60 ° nên AB' = B'C' = AC' = SA = a 2
Gọi H là hình chiếu của S lên mặt phẳng (AB'C'). Khi đó dễ dàng chứng minh được các tam giác SHA, SHB', SHC' bằng nhau. Suy ra HA, HB', HC' bằng nhau. Hay H là tâm đường tròn ngoại tiếp tam giác AB'C'. Vì tam giác AB'C' đều nên H cũng là trọng tâm tam giác AB'C'.
Ta có
Ta có
Chọn A
Trên cạnh SB, SC lần lượt lấy các điểm M, N thỏa mãn SM = SN = 1.
Ta có AM = 1, AN = 2 , MN = 3
=> tam giác AMN vuông tại A
Hình chóp S.AMN có SA = SM = SN = 1.
=> hình chiếu của S trên (AMN) là tâm I của đường tròn ngoại tiếp tam giác AMN, ta có I là trung điểm của MN
Trong ∆ SIM,
Ta có
Chọn B
Lấy M ∈ S B , N ∈ S C thỏa mãn SM=SN=SA=a ⇒ S M S B = 1 2 S N S C = 1 4
Theo giả thiết: A S B ^ = B S C ^ = C S A ^ = 60 o ⇒ S . A M N là khối tứ diện đều cạnh a.
Do đó: V S . A M N = a 3 2 12
Mặt khác:
V S . A M N V S . A B C = S M S B . S N S C = 1 2 . 1 4 = 1 8 ⇒ V S . A B C = 8 V S . A M N = 2 a 3 2 3
Chọn A
Gọi B' trên SB sao cho S B ' = 2 3 S B và C' trên SC sao cho S C ' = 2 3 S C .
Khi đó SA=SB'=SC'=2 => S. AB'C' là khối tứ diện đều.
Cách khác: