, khi đó giá trị của 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

sinx=1 =>x=90

=>cos x=cos 90=0

Cách khác: sin x=1 =>sin2x=1

Mà sin2x+cos2x=1 =>1+cos2x=1 =>cos2x=0=>cos x=0

20 tháng 3 2016

a) 

 

b)                                                             

                

c) Đặt u = ln(1+x),  => 
                                                         
Khi đó :
 


 

20 tháng 3 2016

****Chơi gian****

20 tháng 3 2016

20 nhé bạn.

20 tháng 3 2016

Bạn chỉ cho mình cách làm được không bạn?

1 tháng 4 2016

a) Tập xác định : D = R { 1 }. > 0, ∀x  1.

         Hàm số đồng biến trên các khoảng : (-∞ ; 1), (1 ; +∞).

b) Tập xác định : D = R { 1 }.  < 0, ∀x  1.

         Hàm số nghịch biến trên các khoảng : (-∞ ; 1), (1 ; +∞).

c) Tập xác định : D = (-∞ ; -4] ∪ [5 ; +∞).

                          ∀x ∈ (-∞ ; -4] ∪ [5 ; +∞).

          Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +∞) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (-∞ ; -4) và đồng biến trên khoảng (5 ; +∞).

          d) Tập xác định : D = R { -3 ; 3 }.  < 0, ∀x  ±3.

          Hàm số nghịch biến trên các khoảng : (-∞ ; -3), (-3 ; 3), (3 ; +∞).


 

1 tháng 4 2016

Tập xác định : D = R. y' =  => y' = 0 ⇔ x=-1 hoặc x=1.

         Bảng biến thiên :

         

Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (-∞ ; -1), (1 ; +∞).

25 tháng 3 2016

a+3c=8 nên c=(8-a)/3

a+2b=9 nên b=(9-a)/2

=>a+3c+a+2b=8+9

2a+2b+2c+c=17

2(a+b+c)=17+c

2[a+(9-a)/2+(8-a)/3]=17+(8-a)/3

2[6a/6+(27-3a)/6+(16-2a)/6]=17+(8-a)/3

2[(6a+27-3a+16-2a)/6]=17+(8-a)/3

2*(a+43)/6=17+(8-a)/3

(a+43)/3-(8-a)/3=17

(a+43-8+a)/3=17

2a+35=17*3=51

2a=51-35

2a=16

a=16/2

a=8

t k chắc, tính nhẩm k cầm mt

26 tháng 3 2016

Ta có:

a+3c=8 (1)

a+2b=9 (2)

Cộng từng vế các BĐT (1);(2)

=>a+3c+a+2b=8+9

=>(a+a)+3c+2b=17

=>2a+2c+c+2b=17

=>2a+2c+2b+c=17

=>2(a+b+c)+c=17

a+b+c lớn nhất <=>c nhỏ nhất

Mà c >= 0 (do c không âm)

=>c=0

Thay c=0 vào (1) ta có:a+3.0=8=>a+0=8=>a=8

Vậy a=8 thỏa mãn

(*)Linh ak,c từng nói t là super làm dài,bài này thì c cũng đâu khác t đâu? haha

Giúp nhà mọi người, mik gần thi rồi, ai làm đc câu nào thì làm, giải thích cặn kẽ giúp mik, mik c.ơn nhiều Câu hỏi 1:Cho phương trình:  có 2 nghiệm  và . Để biểu thức  đạt giá trị nhỏ nhất khi đó m =  Câu hỏi 2:Cho phương trình:  có 2 nghiệm  và . Gọi k là số các giá trị của m thỏa mãn . Vậy k =  Câu hỏi 3:Cho tam giác ABC vuông tại A. Gọi R, r theo thứ tự là bán kính đường...
Đọc tiếp
Giúp nhà mọi người, mik gần thi rồi, ai làm đc câu nào thì làm, giải thích cặn kẽ giúp mik, mik c.ơn nhiều
 
Câu hỏi 1:

Cho phương trình: ?$x^2%20-%20(m%20+%201)x%20+%202m%20-%203%20=%200$ có 2 nghiệm ?$x_1$ và ?$x_2$
Để biểu thức ?$A%20=%20x_1^2%20+%20x_2^2$ đạt giá trị nhỏ nhất khi đó m = 
 
Câu hỏi 2:

Cho phương trình: ?$mx^2%20+%20m^2x%20+%201%20=%200$ có 2 nghiệm ?$x_1$ và ?$x_2$
Gọi k là số các giá trị của m thỏa mãn ?$x_1^3%20+%20x_2^3%20=%200$. Vậy k = 
 
Câu hỏi 3:

Cho tam giác ABC vuông tại A. Gọi R, r theo thứ tự là bán kính đường tròn ngoại tiếp và nội tiếp tam giác. 
Biết R = 5cm và r = 2cm. Tổng độ dài hai cạnh AB và AC là  cm.
 
Câu hỏi 4:

Cho hai đường tròn (O) và (O’) cắt nhau ở A và B (O và O’ thuộc 2 nửa mặt phẳng bờ AB).
Kẻ các đường kính BOC và BO’D. Biết OO’ = 10cm, OB = 8cm, O’B = 6cm.
Diện tích tam giác BCD là  ?$cm^2$
 
Câu hỏi 5:

Cho bốn đường thẳng: 
?$(d_1):%20y%20=\frac{3}{4}x+3$ ; ?$(d_2):%20y%20=\frac{3}{4}x-3$ ; ?$(d_3):%20y%20=-\frac{3}{4}x+3$ ;?$%20(d_4):%20y%20=-\frac{3}{4}x-3$ 
cắt nhau tại bốn điểm A, B, C, D. Chu vi tứ giác ABCD =  (đvđd)
 
Câu hỏi 6:

Số nghiệm của phương trình: ?$\frac{4x}{x^2-5x+6}$ ?$+$ ?$\frac{3x}{x^2-7x+6}$ ?$=$ ?$6$ là 
 
Câu hỏi 7:

Cho ?$x+\sqrt{3}=2$. Giá trị của biểu thức: 
?$B%20=%20x^5%20-%203x^4%20-%203x^3%20+%206x^2%20-%2020x%20+%202019$ bằng 
 
Câu hỏi 8:

Tìm x, y thỏa mãn: ?$5x-2\sqrt{x}(2+y)+y^2+1=0$ 
Trả lời: (x;y)=()
(Nhập kết quả x trước và y sau dưới dạng số thập phân gọn nhất ngăn cách nhau bởi dấu “;”)
 
Câu hỏi 9:

Cho ?$x+3y\geq%201$. Giá trị nhỏ nhất của biểu thức ?$A=x^2+y^2$ là  
Nhập kết quả dưới dạng số thập phân gọn nhất.
 
Câu hỏi 10:

Tập hợp các giá trị nguyên x thỏa mãn ?$x^2+x-p=0$ (với p là số nguyên tố)
là {} 
Nhập kết quả theo thứ tự tăng dần ngăn cách nhau bởi dấu “;”
6
14 tháng 3 2016

nhìu quá với lại ko bít làm hjhj 

6 tháng 6 2016

violympic.vn.ok

 

15 tháng 3 2016

x+3y\(\ge\)1=>x\(\ge\)1-3y

Suy ra: A\(\ge\)(1-3y)2+y2=1-6y+9y2+y2=10y2-6y+1=\(10.\left(y^2-\frac{3}{5}y+\frac{1}{10}\right)\)

\(=10.\left(y^2-2.y.\frac{3}{10}+\frac{9}{100}+\frac{1}{100}\right)=10.\left(x-\frac{3}{10}\right)^2+\frac{1}{10}\ge\frac{1}{10}=0,1\)

Vậy GTNN của A là 0,1 tại x=0,3