Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Để A>1 thì \(\dfrac{x+5}{x+8}-1>0\)
=>-3/x+8>0
=>x+8<0
hay x<-8
Ta có :
/x+5/>=0
Để A nhỏ nhất thì /x+5/ phải bằng 0
Vậy gt nhỏ nhất của A là :12
1 )
Vì \(\left|x+5\right|\ge0\forall x\)
\(\Rightarrow A=\left|x+5\right|+12\ge12\forall x\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\left|x+5\right|=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=-5\)
Vậy GTNN của A là : \(12\Leftrightarrow x=-5\)
2 )
Vì \(-\left|x-10\right|\le0\forall x\)
\(\Rightarrow A=-\left|x-10\right|+100\le100\forall x\)
Dấu \("="\)xảy ra
\(\Leftrightarrow-\left|x-10\right|=0\)
\(\Leftrightarrow\left|x-10\right|=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
Vậy GTLN của A là : \(100\Leftrightarrow x=10\)
Ta có : \(K=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
4 \(⋮\)(\(\sqrt{x}-3\))
=> \(\sqrt{x}-3\inƯ\left(4\right)\)
=> \(\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
\(x\) | 16 | 4 | 25 | 1 | 49 | \(\varnothing\) |
Vậy : ...
Bài 1 :
Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)
\(\left|y-\frac{1}{2}\right|\ge0\forall y\)
\(\left(z-2\right)^2\ge0\forall z\)
\(\Rightarrow A\ge2018\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)
Vậy........
Bài 2 :
Lý luận tương tự câu 1) ta có :
\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)
Thay x; y; z vào P ta có :
\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)
\(P=1-1+0\)
\(P=0\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}