\(a^k-1⋮a-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Không, thật ra với mọi k \(\inℕ^∗\)thì ak - 1 \(⋮\)a - 1

Bg

Ta có ak - 1 (a, k \(\inℕ^∗\))

=> ak - 1 = ak - ak - 1 + ak - 1 - ak - 2 +...+ ak - 1

=> ak - 1 = (ak - ak - 1) + (ak - 1 - ak - 2) +...+ (ak - 1)

=> ak - 1 = [(ak - 1(a - 1)] + [ak - 2(a - 1)] +...+ 1(ak - 1)

=> ak - 1 = (a - 1)(ak - 1 + ak - 2 +...+ 1) \(⋮\)a - 1

=> ak - 1 \(⋮\)a - 1

=> ĐPCM

14 tháng 2 2020

các bác giúp mik vs!!!

20 tháng 6 2016

a/ Với k = 0 thì A = 1 + 1 + 1 + 1 = 4 = 22, là số chình phương, vô lí

Mk sửa thành k thuộc N*, k chẵn

A = 19k + 5k + 1995k + 1996k

A = (...1) + (...5) + (..5) + (...6)

A = (...6) + (...5) + (...6)

A = (...1) + (...6) = (...7), không là số chình phương

b/ B = 20042004k + 2001

Với k = 0, B = 20042004.0 + 2001 = 20040 +2001 = 1 + 2001 = 2002, không là số chính phương

Với k khác 0, cách 1: Vì 2004 chia hết cho 3 => 20042004k chia hết cho 9 mà 2001 chia hết cho 3 mà không chia hết cho 9

=> B chia hết cho 3 mà không chia hết cho 9, không phải số chính phương

Cách 2: B = 20042004k + 2001

B = (20044)501k + 2001

B = (...6)501k + 2001

B = (...6) + 2001

B = (...7), không là số chính phương

 S1= 1.2.3

                       S2= 2.3.4

                       S3=3.4.5

                       ...........

                       Sn = n(n+1)(n+2)

                       S= S1+S2+S3+...+Sn

  Chứng minh 4S + 1 là 1 số chính phương

11 tháng 2 2019

\(S=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+...+k\left(k+1\right)\left(k+2\right)\)

\(\Rightarrow4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+...+k\left(k+1\right)\left(k+2\right)\cdot4\)

\(=1\cdot2\cdot3\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+3\cdot4\cdot5\left(6-2\right)+.....+k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\)\(=1\cdot2\cdot3\cdot4-0\cdot1\cdot2\cdot3+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+....+k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)\(=k\left(k+1\right)\left(k+2\right)\left(k+3\right)\)

Ta cần chứng minh:\(k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1\) là số chính phương.

Thật vậy:\(k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1=\left[k\left(k+3\right)\right]\left[\left(k+1\right)\left(k+2\right)\right]+1\)

\(=\left(k^2+3k\right)\left(k^2+3k+2\right)+1\left(1\right)\)

Đặt \(k^2+3k=t\) thì (1) sẽ trở thành:

\(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(k^2+3k+1\right)^2\)

Vì \(k\in N\)nên \(\left(k^2+3k+1\right)^2\) là số chính phương hay \(4S+1\) là số chính phương.

28 tháng 2 2020

a) Giả sử \(x+y\) là số nguyên tố

Ta có : \(x^3-y^3⋮x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)

\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )

\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )

\(\Rightarrow x⋮x+y\) (1)

Mặt khác \(x< x+y,x+y\) là số nguyên tố

\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)

Do đó, điều giả sử sai.

Vậy ta có điều phải chứng minh.

28 tháng 2 2020

Bạn thì nhanh nhờ

Del rep cho

3 tháng 8 2016

a) Tứ giác AKBC có:AB,KC là hai đường chéo cắt nhau tại D và

                      DA=DB(gt) 

                       DC=DK(gt)

=>Tứ giác AKBC là hình bình hành

=>AK=BC                           (1)

Tứ giác AICB có BI,AC là hai đường chéo cắt nhau tại E mà:

                          EA=EC(gt)

                          EB=EI(gt)

=>Tứ giác AICB là hình bình hành

=>AI=BC                     (2)

       Từ (1)(2) suy ra: AK=AI

=>A là trung điểm của KI

28 tháng 11 2017

Cái này bạn lấy ở đâu vậy?