Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có cần vậy không, để dành nik để đi phá nx chứ coi chừng bị khoá ấy
ta có: \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}=\frac{AD-ID}{ID}+\frac{BE-IE}{IE}+\frac{FC-FI}{FI}\)
=\(\frac{AD}{ID}+\frac{BE}{IE}+\frac{FC}{FI}-3\)
(từ A và I kẻ 2 đường thẳngAH,IK vuông góc vs BC(H,KϵBC) →áp dụng hệ quả định lý tales :\(\frac{AD}{ID}=\frac{AH}{IK}\)mà AH và IK là 2 đường cao của 2 Δ có chung đáy là ΔABCvà ΔBIC→\(\frac{AH}{IK}=\frac{SABC}{SBIC}\) ;làm tương tự vs các cạnh còn lại ,ta có:\(\frac{BE}{IE}=\frac{SABC}{SAIC};\frac{FC}{FI}=\frac{SABC}{SAIB}\))(cái này làm ngoài nháp thôi ,típ tục nèo)
=\(\frac{SABC}{SBIC}+\frac{SABC}{SAIC}+\frac{SABC}{SAIB}-3\)
=\(\frac{SAIB+SAIC+SBIC}{SBIC}+\frac{SAIB+SAIC+SBIC}{SAIC}+\frac{SAIB+SAIC+SBIC}{SAIB}-3\)
=\(3+\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}+\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}+\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}-3\)
Áp dụng BĐT coosshi cho 2 số dương ,ta có:
\(\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}\ge2\sqrt{\frac{SAIB}{SBIC}.\frac{SBIC}{SAIB}=2}\)tương tự ta có:\(\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}\ge2;\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}\ge2\)
vậy \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{FI}\ge3+2+2+2-3=6\left(đfcm\right)\)
a) Hai tam giác IAB và ICA đồng dạng với nhau do có góc I chung và \(\widehat{IAB}=\widehat{ICA}\) (Tính chất của góc tạo bởi tia tiếp tuyến và dây cung) ⇔ \(\frac{S_{IAB}}{S_{ICA}}=\frac{AB^2}{AC^2}\)
Đồng thời ta có các tỉ số: \(\frac{IB}{IA}=\frac{IA}{IC}=\frac{AB}{CA}\)
Dễ thấy \(\frac{S_{IAB}}{S_{ICA}}=\frac{IB}{IC}\)
Vậy \(\frac{IB}{IC}=\frac{AB^2}{AC^2}\)
b) Dựa vào (1), ta suy ra: \(\frac{IC-24}{IA}=\frac{IA}{IC}=\frac{20}{28}=\frac{5}{7}\)
⇒ IA = 35 cm; IC = 49 cm; IB = 21 cm.
Đặt \(BC=a;AC=b;AB=c\left(a,b,c>0\right)\)
\(\Delta BCF\)có phân giác trong BI \(\left(I\in CF\right)\)\(\Rightarrow\frac{IF}{IC}=\frac{BF}{BC}\)(1)
\(\Delta ABC\)có phân giác trong CF \(\left(F\in AB\right)\)\(\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}=\frac{c}{a+b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{IF}{IC}=\frac{c}{a+b}\)
Tương tự, ta có \(\frac{IE}{IB}=\frac{b}{c+a}\); \(\frac{ID}{IA}=\frac{a}{b+c}\)
Từ đó \(\frac{ID}{IA}+\frac{IE}{IB}+\frac{IF}{IC}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)với \(a,b,c>0\)
Thật vậy: Ta chứng minh bất đẳng thức phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với \(x,y,z>0\)
Áp dụng bất đẳng thức Cô-si cho 3 số dương \(x,y,z\), ta có: \(x+y+z\ge3\sqrt[3]{xyz}\)
Tương tự, ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Từ đó \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
Vậy bất đẳng thức được chứng minh.
Áp dụng bất đẳng thức trên, ta có: \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\ge\frac{9}{2}\)
\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{b}{c+a}+1+\frac{a}{b+c}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\)đpcm
\(\left(\frac{ID}{AD}+\frac{IE}{BE}+\frac{IF}{CF}\right)\left(\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\right)\ge\left(\sqrt{\frac{ID}{AD}}\sqrt{\frac{AD}{ID}}+\sqrt{\frac{IE}{BE}}\sqrt{\frac{BE}{IE}}+\sqrt{\frac{IF}{CF}}\sqrt{\frac{CF}{IF}}\right)^2\)
\(\Rightarrow\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\ge\left(1+1+1\right)^2\Leftrightarrow\frac{IA+ID}{ID}+\frac{IB+IE}{IE}+\frac{IC+IF}{IF}\ge9\)
\(\Rightarrow\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!