K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác AMB nội tiếp trong đường tròn (I) có AB là đường kính nên Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: AM ⊥ BM hay BM ⊥ AN

Suy ra: AM = MN (đường kính vuông góc dây cung).

11 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

 Vì A, I, B thẳng hàng nên:

BI = AB – AI

Vậy đường tròn (I; IA) tiếp xúc với đường tròn (B; BA) tại A.

23 tháng 9 2019

Ta có AN  NO, MP NO, M AN => AN // MP

Do đó AMPN là hình bình hành ó AN = MP = 2x

Tam giác ∆ANO đồng dạng với ∆NEM =>  A N N E = N O E M = > N E = 2 x 2 R  

TH 1.NE = NO – OE =>  2 x 2 R = R − R 2 − x 2 ⇔ 2 x 2 = R 2 − R R 2 − x 2  

Đặt  R 2 − x 2 = t , t ≥ 0 ⇒ x 2 = R 2 − t 2 .

PTTT 2 ( R 2 − t 2 ) = R 2 − R t ⇔ 2 t 2 − R t − R 2 = 0 ⇔ 2 t = − R t = R  

Do  t ≥ 0 ⇒ t = R ⇔ R 2 − x 2 = R ⇔ x = 0 ⇒ A ≡ B  (loại)

TH 2 NE = NO + OE =>  2 x 2 R = R + R 2 − x 2 ⇔ 2 x 2 = R 2 + R R 2 − x 2  

Đặt R 2 − x 2 = t , t ≥ 0 ⇒ x 2 = R 2 − t 2 .

PTTT 2 ( R 2 − t 2 ) = R 2 + R t ⇔ 2 t 2 + R t − R 2 = 0 ⇔ 2 t = R t = − R  

Do t ≥ 0 ⇒ 2 t = R ⇔ 2 R 2 − x 2 = R ⇔ x = R 3 2 = > A O = 2 R  (loại)

Vậy A thuộc BC, cách O một đoạn bằng 2R thì AMPN là hbh

7 tháng 1 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có OO' là đường nối tâm của (O) và (O') nên OO' là đường trung trực của AB.

Suy ra IE ⊥ AB và EA = EB

Ta lại có IA = IK (do K là điểm đối xứng của A qua I).

Nên IE là đường trung bình của tam giác AKB.

Suy ra IE // KB

Mà IE ⊥ AB

Suy ra KB ⊥ AB (đpcm)

23 tháng 6 2017

Đường tròn

Đường tròn

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2