\(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

\(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

\(\Leftrightarrow a^3=16-8\sqrt{5}+16+8\sqrt{5}+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\cdot a\)

\(\Leftrightarrow a^3=32+3\sqrt[3]{256-320}\cdot a\)

\(\Leftrightarrow a^3=32-12a\)

Giải pt được \(a=2\).

Khi đó : \(P\left(a\right)=\left(2^2+12\cdot2-31\right)=-3\)

Vậy...

20 tháng 1 2019

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+96\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)

\(a^3=32+96\sqrt[3]{-64}=32+96.\left(-4\right)=-352\)

đến đây dễ r 

20 tháng 1 2019

\(a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\right)\)

22 tháng 3 2017

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+3.\sqrt[3]{16^2-8^2.5}a\)

\(a^3=32+3.\sqrt[3]{4^3\left(4-5\right)}a=32-12a\)

\(f\left(x\right)=\left[\left(32-12a\right)+12a-31\right]^{2016}=1^{2016}=1\)

22 tháng 3 2017

a=\(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)

=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}+\sqrt[3]{1+3\sqrt{5}+15+5\sqrt{5}}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}+\sqrt[3]{\left(1+\sqrt{5}\right)^3}\)

=1-\(\sqrt{5}+1+\sqrt{5}\)=2

thay vào ta được f(a)=(8+24-31)2016=(-1)2016=1

18 tháng 6 2018

\(\sqrt[3]{}\) hay\(\sqrt{ }\) vậy

AH
Akai Haruma
Giáo viên
5 tháng 3 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến

Phần b đề không rõ.

6 tháng 3 2020

Mình ghi rõ cho bạn xem nha!

Violympic toán 9

12 tháng 10 2017

a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)

Phương trình đã cho tương đương với hệ

\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)

\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)

Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm

12 tháng 10 2017

c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)

Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)

Tiếp tục giải ;v

22 tháng 7 2019

a) ĐK: x2 - 7x + 8 ≥ 0

Đặt √(x2 - 7x + 8) = a (1)

⇔ a2 + a - 20 = 0

⇔ a = 4 hoặc a = -5

Thay vào (1) là tìm được x, kết hợp với ĐK là xong.

22 tháng 7 2019

b) Dễ chứng minh Vế Trái lớn hơn hoặc bằng 0.

Dấu "=" xảy ra khi x = -4; y=​ 4. ....... là nghiệm của pt