Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\begin{cases}x+my=m+1\\y+mx=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y+m(m+1-my)=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y-my^2+m^2+m=3m-1\\\end{cases}$
$\Leftrightarrow\begin{cases}x=m+1-my\\y(m^2-1)=m^2-2m+1\\\end{cases}$
Để HPT có nghiệm duy nhất thì $m^2-1 \neq 0\\\Leftrightarrow m \ne \pm1$
$\Leftrightarrow\begin{cases}y=\dfrac{(m-1)^2}{(m-1)(m+1)}=\dfrac{m-1}{m+1}\\x=m+1-my=\dfrac{(m+1)^2-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\\end{cases}$
$\Rightarrow xy=\dfrac{(3m+1)(m-1)}{(m+1)^2}$
$=\dfrac{3m^2-2m-1}{(m+1)^2}$
Xét $xy+1$
$=\dfrac{3m^2-2m-1+m^2+2m+1}{(m+1)^2}$
$=\dfrac{4m^2}{(m+1)^2} \ge 0$
$\Rightarrow xy \ge -1$
Dấu "=" xảy ra khi $m=0$
Vậy m=0 thì HPT có nghiệm duy nhất và $min_{xy}=-1$
\(\begin{cases} x+my=m+1 \\ mx+y-3m-1 \end{cases}\) (1)
a) Giải HPT khi m = 1
Thay m=1 vào hệ phương trình (1) , ta có :
\(\begin{cases} x+my=m+1 \\ mx+y-3m-1 \end{cases}\)<=> \(\begin{cases} x+y=1+1 \\ x+y-3=1 \end{cases}\) <=> \(\begin{cases} x+y=2 \\ x+y=4 \end{cases}\) <=> \(\begin{cases} 0x=-2 \\ x+y=2 \end{cases}\) => phương trình vô nghiệm
Vậy phương trình (1) vô nghiệm
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
Khi \(m=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)
Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)
Vậy...